Simultaneous results for unsteady flow of MHD hybrid nanoliquid above a flat/slendering surface


The pivotal aim of this research is to address the boundary layer analysis of two-dimensional unsteady hybrid nanofluid flow over a flat/slendering stretching surface. Thermal radiation and magnetohydrodynamic analysis are featured in this work. The transformed nonlinear ordinary differential equations are resolved using Runge–Kutta–Fehlberg technique. Then, a complete discussion of the influences of the flow regime on several thermofluidic parameters is presented. The significant outcome of the current investigation is that the increment in magnetic field and nanoparticle volume fraction parameters declines the skin friction. Furthermore, it is shown that when the radiation and the nanoparticle volume fraction are improved, the heat transfer rate triggers considerable evolution. The obtained results of this model closely match with those available in the literature as a limiting situation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME-Pub-Feb. 1995;231:99–106.

    CAS  Google Scholar 

  2. 2.

    Sheikholeslami M, Rashidi MM. Non–uniform magnetic field effect on nanofluid hydrothermal treatment considering Brownian motion and thermophoresis effects. J Brazil Soc Mech Sci Eng. 2016;38:1171–84.

    CAS  Article  Google Scholar 

  3. 3.

    Sheikholeslami M, Ganji DD. Transportation of MHD nanofluid free convection in a porous semi annulus using numerical approach. Chem Phys Lett. 2017;669:202–10.

    CAS  Article  Google Scholar 

  4. 4.

    Machireddy GR, Naramgari S. Heat and mass transfer in radiative MHD Carreau fluid with cross diffusion. Ain Shams Eng J. 2018;9:1184–204.

    Article  Google Scholar 

  5. 5.

    Qureshi MZA, Ali K, Iqbal MF, Ashraf M, Ahmad S. Heat and mass transfer enhancement of nanofluids flow in the presence of metallic/metallic-oxides spherical nanoparticles. Eur Phys J Plus. 2017;132:1–12.

    CAS  Article  Google Scholar 

  6. 6.

    Hamed BM, Sidik NAC, Noor M, Yazid MNAWM, Mamat R, Najafi G, Kefayati GHR. A review on why researchers apply external magnetic field on nanofluids. Int Commun Heat Mass Transf. 2016;78:60–7.

    Article  Google Scholar 

  7. 7.

    Hashim A, Hamid M. Khan, Multiple solutions for MHD transient flow of Williamson nanofluids with convective heat transport. J Taiwan Inst Chem Eng. 2019;103:126–37.

    CAS  Article  Google Scholar 

  8. 8.

    Zaman S, Gul M. Magnetohydrodynamic bioconvective flow of Williamson nanofluid containing gyrotactic microorganisms subjected to thermal radiation and Newtonian conditions. J Theor Biol. 2019;479:22–8.

    Article  Google Scholar 

  9. 9.

    Mohapatra DK, Mishra S, Jena S. Cu-water and Cu-kerosene micropolar nanofluid flow over a permeable stretching sheet.pdf. Heat Transf Res. 2019;48:2478–96.

    Article  Google Scholar 

  10. 10.

    Seikh AH, Akinshilo AT, Taheri MH, Gorji MR, Alharthi N, Khan I, Khan AR. Influence of the nanoparticles and uniform magnetic field on the slip blood flows in arterial vessels. Phys Scr Accept. 2019;94:1–18.

    Google Scholar 

  11. 11.

    Zhang Y, Jiang J, Bai Y. MHD flow and heat transfer analysis of fractional Oldroyd-B nanofluid between two coaxial cylinders. Comput Math Appl. 2019;78:3408–21.

    Article  Google Scholar 

  12. 12.

    Mackolil J, Mahanthesh B. Sensitivity analysis of radiative heat transfer in Casson and nano fluids under diffusion-thermo and heat absorption effects. Eur Phys J Plus. 2019;134:619.

    CAS  Article  Google Scholar 

  13. 13.

    Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. Effect of Al2O3-Cu/water hybrid nanofluid in heat transfer. Exp Therm Fluid Sci. 2012;38:54–60.

    CAS  Article  Google Scholar 

  14. 14.

    Das PK. A review based on the effect and mechanism of thermal conductivity of normal nanofluids and hybrid nanofluids. J Mol Liq. 2017;240:420–46.

    CAS  Article  Google Scholar 

  15. 15.

    Huminic G, Huminic A. Hybrid nanofluids for heat transfer applications—a state-of-the-art review. Int J Heat Mass Transf. 2018;125:82–103.

    CAS  Article  Google Scholar 

  16. 16.

    Sajid MU, Ali HM. Thermal conductivity of hybrid nanofluids: a critical review. Int J Heat Mass Transf. 2018;126:211–34.

    CAS  Article  Google Scholar 

  17. 17.

    Gireesha BJ, Sowmya G, Khan MI, Oztop HF. Flow of hybrid nanofluid across a permeable longitudinal moving fin along with thermal radiation and natural convection. Comput Methods Programs Biomed Received. 2020;185:105166.

    CAS  Article  Google Scholar 

  18. 18.

    Ahmad S, Nadeem S, Ullah N. Entropy generation and temperature-dependent viscosity in the study of SWCNT-MWCNT hybrid nanofluid. Appl Nanosci. 2020;10:1–13.

    Article  Google Scholar 

  19. 19.

    Hosseinzadeh K, Moghaddam MAE, Asadi A, Mogharrebi AR, Ganji DD. Effect of internal fins along with hybrid nano-particles on solid process in star shape triplex latent heat thermal energy Storage System by numerical simulation. Renew Energy. 2020;154:497–507.

    CAS  Article  Google Scholar 

  20. 20.

    Khodadadi H, Aghakhani S, Majd H, Kalbasi R, Wongwises S. A comprehensive review on rheological behavior of mono and hybrid nanofluids: effective parameters and predictive correlations. Int J Heat Mass Transf. 2018;127:997–1012.

    CAS  Article  Google Scholar 

  21. 21.

    Izadi M, Sheremet MA, Mehryan SAM. Natural convection of a hybrid nanofluid affected by an inclined periodic magnetic field within a porous medium. Chin J Phys. 2020. Press).

    Article  Google Scholar 

  22. 22.

    Tlili I, Nabwey HA, Ashwinkumar GP, Sandeep N. 3-D magnetohydrodynamic AA7072-AA7075/methanol hybrid nanofluid flow above an uneven thickness surface with slip effect. Sci Rep. 2020;10:1–13.

    Article  Google Scholar 

  23. 23.

    Sakiadis BC. Boundary layer behavior on continuous solid surfaces: 1. Boundary layer equations for two-dimensional and axisymmetric flow. AIChE J. 1961;7:26–8.

    CAS  Article  Google Scholar 

  24. 24.

    Crane LJ. Flow past a stretching plate. Z Angew Math Phys. 1970;21:645–7.

    Article  Google Scholar 

  25. 25.

    Xu L, Lee EWM. Variational iteration method for the magnetohydrodynamic flow over a nonlinear stretching sheet. Abstr Appl Anal. 2013;2013:1–5.

    Google Scholar 

  26. 26.

    Mabood F, Das K. Melting heat transfer on hydromagnetic flow of a nanofluid over a stretching sheet with radiation and second-order slip. Eur Phys J Plus. 2016;131:1–12.

    CAS  Article  Google Scholar 

  27. 27.

    Yang L, Du K. A comprehensive review on the natural, forced, and mixed convection of non-Newtonian fluids (nanofluids) inside different cavities. J Therm Anal Calorim. 2019.

    Article  Google Scholar 

  28. 28.

    Maleki H, Safaei MR, Alrashed AAAA, Kasaeian A. Flow and heat transfer in non-Newtonian nanofluids over porous surfaces. J Therm Anal Calorim. 2019;135:1655–66.

    CAS  Article  Google Scholar 

  29. 29.

    Hayat T, Muhammad T, Shehzad SA, Alsaedi A. An analytical solution for magnetohydrodynamic Oldroyd-B nanofluid flow induced by a stretching sheet with heat generation/absorption. Int J Therm Sci. 2017;111:274–88.

    CAS  Article  Google Scholar 

  30. 30.

    Majeed A, Zeeshan A, Ellahi R. Unsteady ferromagnetic liquid flow and heat transfer analysis over a stretching sheet with the effect of dipole and prescribed heat flux. J Mol Liq. 2016;223:528–33.

    CAS  Article  Google Scholar 

  31. 31.

    Patel HR, Mittal AS, Darji RR. MHD flow of micropolar nanofluid over a stretching/shrinking sheet considering radiation. Int Commun Heat Mass Transf. 2019;108:104322.

    CAS  Article  Google Scholar 

  32. 32.

    Hosseinzadeh K, Afsharpanah F, Zamani S, Gholinia M, Ganji DD. A numerical investigation on ethylene glycol-titanium dioxide nanofluid convective flow over a stretching sheet in presence of heat generation/absorption. Case Stud Therm Eng. 2018;12:228–36.

    Article  Google Scholar 

  33. 33.

    Babu MJ, Sandeep N. Three-dimensional MHD slip flow of nanofluids over a slendering stretching sheet with thermophoresis and Brownian motion effects. Adv Powder Technol. 2016.

    Article  Google Scholar 

  34. 34.

    Avramenko AA, Shevchuk IV, Tyrinov AI, Blinov DG. Heat transfer in stable film boiling of a nanofluid over a vertical surface”. Int J Therm Sci. 2015;92:106–18.

    CAS  Article  Google Scholar 

  35. 35.

    Avramenko A, Shevchuk I, Tyrinov A, Blinov DG. Heat transfer at film condensation of stationary vapor with nanoparticles near a vertical plate. Appl Therm Eng. 2014;73:389–96.

    Article  Google Scholar 

  36. 36.

    Avramenko A, Shevchuk I, Tyrinov A, Blinov DG. Heat transfer at film condensation of moving vapor with nanoparticles over a flat surface. Int J Heat Mass Transf. 2015;82:316–24.

    Article  Google Scholar 

  37. 37.

    Avramenko AA, Shevchuk IV. Lie group analysis and general forms of self-similar parabolic equations for fluid flow, heat and mass transfer of nanofluids. J Therm Anal Calorim. 2019;135:223–35.

    CAS  Article  Google Scholar 

  38. 38.

    Sheikholeslami M, Arabkoohsar A, Shafee A, et al. Second law analysis of a porous structured enclosure with nano-enhanced phase change material and under magnetic force. J Therm Anal Calorim. 2020;140:2585–99.

    CAS  Article  Google Scholar 

  39. 39.

    Sheikholeslami M. Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure. J Mol Liq. 2018;249:1212–21.

    CAS  Article  Google Scholar 

  40. 40.

    Borzuei M, Baniamerian Z. Role of nanoparticles on critical heat flux in convective boiling of nanofluids: Nanoparticle sedimentation and Brownian motion. Int J Heat Mass Transf. 2020;150:119299.

    CAS  Article  Google Scholar 

  41. 41.

    Karthikeyan A, Coulombe S, Kietzig AM. Boiling heat transfer enhancement with stable nanofluids and laser textured copper surfaces. Int J Heat Mass Transf. 2018;126:287–96.

    CAS  Article  Google Scholar 

  42. 42.

    Wang Hui, Chen Li, Zhiguo Qu, Yin Ying, Kang Qinjun, Bo Yu, Tao Wen-Quan. Modeling of multi-scale transport phenomena in shale gas production—a critical review. Appl Energy. 2020;262:114575.

    Article  Google Scholar 

Download references


Authors acknowledge the UGC, India, for startup Grant No. 30-489/2019(BSR).

Author information



Corresponding authors

Correspondence to G. P. Ashwinkumar or N. Sandeep.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mabood, F., Ashwinkumar, G.P. & Sandeep, N. Simultaneous results for unsteady flow of MHD hybrid nanoliquid above a flat/slendering surface. J Therm Anal Calorim (2020).

Download citation


  • Slendering stretching sheet
  • Hybrid nanofluid
  • Thermal radiation
  • MHD
  • Slip effects