A multidisciplinary approach to the mortars characterization from the Town Walls of Gubbio (Perugia, Italy)


In the frame of the HERACLES (HEritage Resilience Against CLimate Events on Site) project, a set of cultural heritage sites was studied to improve their resilience against climate events. The mediaeval Town Walls of Gubbio, in the centre of Italy, are among these. Over the centuries, several factors including environmental actions and structural and material repairs have produced different criticalities, involving both structure and materials. A severe problem consists in the progressive degradation of the mortars binding the masonry. Since the wall body structure behaves/reacts properly only if the cohesion between mortar and stones is sufficiently large, it follows that mortars degradation represents a quite significant issue that deserves a special attention. The present work focuses on the characterization of the mortars sampled in various parts of the Walls, corresponding to different historical periods, restoration measures and interventions. They were characterized to determine the corresponding mineralogical and chemical compositions along with morphological features and to investigate their mechanical properties. For that purpose, penetrometric and sclerometric tests on site and ex situ laboratory techniques, such as X-ray diffraction, polarized light microscopy, scanning electron microscopy, thermogravimetry and differential thermal analysis, were used to examine the weathering effects on mortars and more generally their degradation state, in order to plan appropriate restoration and repair actions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Sesana E, Gagnon AS, Bertolin C, Hughes J. Adapting cultural heritage to climate change risks: perspectives of cultural heritage experts in Europe. Geosciences. 2018;8:305–28.

    Google Scholar 

  2. 2.

    Bertolin C, Camuffo D. Climate Change Impact on Movable and Immovable Cultural Heritage throughout Europe; Damage Risk Assessment, Economic Impact and Mitigation Strategies for Sustainable Preservation of Cultural Heritage in the Times of Climate Change. Deliverable 5.2 Climate For Culture EU Project, 2014. https://www.climateforculture.eu/index.php?inhalt=download&file=pages/user/downloads/project_results/D_05.2_final_publish.compressed.pdf. Accessed 18 Jun 2020.

  3. 3.

    Leissner J, Kilian R, Kotova L, Jacob D, Mikolajewicz U, Broström T, Ashley-Smith J, Schellen HL, Martens M, van Schijndel J, Antretter F, Winkler M, Bertolin C, Camuffo D, Simeunovic G, Vyhlídal T. Climate for culture: assessing the impact of climate change on the future indoor climate in historic buildings using simulations. Herit Sci. 2015;3:1–15.

    Google Scholar 

  4. 4.

    Cassar M. Climate Change and the Historic Environment; Centre for Sustainable Heritage, University College London with support from English Heritage and the UK Climate Impacts Programme. London: UCL; 2005. p. 21–42.

    Google Scholar 

  5. 5.

    Brimblecombe P, Grossi CM, Harris I. Climate change critical to cultural heritage. In: Gökçekus H, Türker U, LaMoreaux JW, editors. Survival and sustainability. Springer: Berlin; 2011. pp. 195–205.

    Google Scholar 

  6. 6.

    Erkal A, D’Ayala D, Sequeira L. Assessment of wind-driven rain impact, related surface erosion and surface strength reduction of historic building materials. Build Environ. 2012;57:336–48.

    Google Scholar 

  7. 7.

    D’Ayala D, Aktas YD. Moisture dynamics in the masonry fabric of historic buildings subjected to wind-driven rain and flooding. Build Environ. 2016;104:208–20.

    Google Scholar 

  8. 8.

    Cavalagli N, Kita A, Castaldo VL, Pisello AL, Ubertini F. Hierarchical environmental risk mapping of material degradation in historic masonry buildings: an integrated approach considering climate change and structural damage. Constr Build Mater. 2019;215:998–1014.

    Google Scholar 

  9. 9.

    HERACLES-HEritage Resilience Against CLimate Events on Site, H2020 Grant Agreement 700395 http://www.heracles-project.eu/. Accessed 18 Jun 2020.

  10. 10.

    Morricone A, Macchia A, Campanella L, David M, de Togni S, Turci M, Maras A, Meucci C, Ronca S. Archeometrical analysis for the characterization of mortars from Ostia Antica. Procedia Chem. 2013;8:231–8.

    CAS  Google Scholar 

  11. 11.

    Cardoso I, Macedo MF, Vermeulen F, Corsi C, Santos Silva A, Rosado L, Candeias A, Mireo J. A multidisciplinary approach to the study of archaeological mortars from the town of Ammaia in the roman province of Lusitania (Portugal). Archaeometry. 2014;56(1):1–24.

    CAS  Google Scholar 

  12. 12.

    Tenconi M, Karatasios I, Bala’awi F, Kilikoglou V. Technological and microstructural characterization of mortars and plasters from the Roman site of Qasr Azraq, in Jordan. J Cult Herit. 2018;33:100–16.

    Google Scholar 

  13. 13.

    Elsen J. Microscopy of historic mortars-a review. Cem Concr Res. 2006;36:1416–24.

    CAS  Google Scholar 

  14. 14.

    Arizzi A, Cultrone G. The influence of aggregate texture, morphology and grading on the carbonation of non-hydraulic (aerial) lime-based mortars. J Eng Geol Hydrogeol. 2013;46:507–20.

    CAS  Google Scholar 

  15. 15.

    Vecchio S, La Ginestra A, Frezza A, Ferragina C. The use of thermoanalytical techniques in the characterization of ancient mortars. Thermochim Acta. 1993;227:215–23.

    CAS  Google Scholar 

  16. 16.

    Cavallaro G, Lazzara G, Milioto S, Parisi F, Ruisi F. Nanocomposites based on esterified colophony and halloysite clay nanotubes as consolidants for waterlogged archaeological woods. Cellulose. 2017;24:3367–76.

    CAS  Google Scholar 

  17. 17.

    Cavallaro G, Gallitto AA, Lisuzzo L, Lazzara G. Comparative study of historical woods from XIX century by thermogravimetry coupled with FTIR spectroscopy. Cellulose. 2019;26:8853–65.

    Google Scholar 

  18. 18.

    Cenciaioli L, Gubbio: le pietre, gli dei, le parole: quattro percorsi archeologici per leggere la citta. L’Arte Grafica, Gubbio; 2007. p. 6–7.

  19. 19.

    Cavalagli N, Kita A, Falco S, Trillo F, Costantini M, Ubertini F. Satellite radar interferometry and in situ measurements for static monitoring of historical monuments: the case of Gubbio, Italy. Remote Sens Environ. 2019;235:111453.

    Google Scholar 

  20. 20.

    Carvalho F, Lopes A, Curulli A, Pereira da Silva T, Margarida M, Lima RA, Montesperelli G, Ronca S, Padeletti G, Veiga JP. The case study of the medieval Town Walls of Gubbio in Italy: first results on the characterization of mortars and binders. Heritage. 2018;1:468–78.

    Google Scholar 

  21. 21.

    Udden JA. Mechanical composition of clastic sediments. Bull Geol Soc Am. 1914;25:655–744.

    Google Scholar 

  22. 22.

    Wentworth CK. A scale of grade and class terms for clastic sediments. J Geol. 1922;30:377–92.

    Google Scholar 

  23. 23.

    Vecchio S, Catalani A, Rossi V, Tomassetti M. Thermal analysis study on vaporization of some analgesics. Acetanilide and derivatives. Thermochim Acta. 2004;420:99–104.

    CAS  Google Scholar 

  24. 24.

    DRC (Diagnostic Research Company), User Manual Penetrometer Malta SRM Version 1.0, 2015. https://www.drcitalia.it/en. Accessed 18 Jun 2020.

  25. 25.

    Corti C, Rampazzi L, Bugini R, Sansonetti A, Biraghi M, Castelletti L, Nobile L, Orsenigo C. Thermal analysis and archaeological chronology: the ancient mortars of the site of Baradello (Como, Italy). Thermochim Acta. 2013;572:71–84.

    CAS  Google Scholar 

  26. 26.

    Jonaitis B, Antonovic V, Sneideris A, Boris R, Zavalis R. Analysis of physical and mechanical properties of the mortar in the historic retaining wall of the Gediminas Castle Hill (Vilnius, Lithuania). Materials. 2019;12(1):8.

    CAS  Google Scholar 

  27. 27.

    Iordanidis A, Garcia-Guinea J, Strati A, Gkimourtzina A, Papoulidou A. Thermal, mineralogical and spectroscopic study of plasters from three post-Byzantine churches from Kastoria (northern Greece). J Therm Anal Calorim. 2011;103:577–86.

    CAS  Google Scholar 

  28. 28.

    Vecchio Ciprioti S, Catauro M. Synthesis, structural and thermal behavior study of four Ca-containing silicate gel-glasses. Activation energies of their dehydration and dehydroxylation processes. J Therm Anal Calorim. 2016;123:2091–101.

    CAS  Google Scholar 

  29. 29.

    Duce C, Vecchio Ciprioti S, Ghezzi L, Ierardi V, Tinè MR. Thermal behavior study of pristine and modified halloysite nanotubes. A modern kinetic study. J Therm Anal Calorim. 2015;121:1011–9.

    CAS  Google Scholar 

  30. 30.

    Franquelo ML, Robador MD, Perez-Rodriguez JL. Study of coatings by thermal analysis in a monument built with calcarenite. J Therm Anal Calorim. 2015;121:195–201.

    CAS  Google Scholar 

  31. 31.

    Sabbioni C, Zappia G. Oxalate patinas on ancient monuments: the biological hypothesis. Aerobiologia. 1991;7:31–7.

    Google Scholar 

  32. 32.

    Del Monte M, Sabbioni C, Zappia G. The origin of calcium oxalates on historical buildings, monuments and natural outcrops. Sci Tot Environ. 1987;67:17–39.

    Google Scholar 

  33. 33.

    Bartz W, Filar T. Mineralogical characterization of rendering mortars from decorative details of a baroque building in Kożuchów (SW Poland). Mater Charact. 2010;61:105–15.

    CAS  Google Scholar 

  34. 34.

    Moropoulou A, Bakolas A, Bisbikou K. Characterization of ancient, byzantine and later historic mortars by thermal and X-ray diffraction techniques. Thermochim Acta. 1995;269(270):779–95.

    Google Scholar 

  35. 35.

    Bakolas A, Biscontin G, Moropoulou A, Zendri E. Characterization of structural Byzantine mortars by thermogravimetric analysis. Thermochim Acta. 1998;321:151–60.

    CAS  Google Scholar 

  36. 36.

    Moropolou A, Polikreti K, Bakolas A, Michailidis P. Correlation of physicochemical and mechanical properties of historical mortars and classification by multivariate statistics. Cem Concr Res. 2003;33:891–8.

    Google Scholar 

  37. 37.

    Gunasekaran S, Anbalayan G. Thermal decomposition of natural dolomite. Bull Mater Sci. 2007;30:339–44.

    CAS  Google Scholar 

  38. 38.

    Vola G, Bresciani P, Rodeghero E, Sarandrea L, Cruciani G. Impact of rock fabric, thermal behavior, and carbonate decomposition kinetics on quicklime industrial production and slaking reactivity. J Therm Anal Calorim. 2019;136:967–93.

    CAS  Google Scholar 

  39. 39.

    Földvári M. Handbook of the thermogravimetric system of minerals and its use in geological practice. Central Eur Geol. 2013;56(4):397–400 (ISSN 1788-2281).

    Google Scholar 

  40. 40.

    Tajuelo Rodriguez E, Garbev K, Merz D, Black L, Richardson IG. Thermal stability of C-S-H phases and applicability of Richardson and Groves’ and Richardson C-(A)-S-H(I) models to synthetic C-S-H. Cem Concr Res. 2017;93:45–56.

    CAS  Google Scholar 

  41. 41.

    Elsen J, Van Balen K, Mertens G. Hydraulicity in historic lime mortars: a review. In: Válek J, Hughes J, Groot C, editors. Historic mortars—characterisation, assessment, conservation and repair. Praha: Springer; 2012. p. 121–36.

    Google Scholar 

  42. 42.

    Biscontin G, Pellizon Birelli M, Zendri E. Characterization of binders employed in the manufacture of Venetian historical mortars. J Cult Herit. 2002;3:31–7.

    Google Scholar 

  43. 43.

    Michael P, Schuller PE. Non-destructive testing and damage assessment of masonry structures. Progr Struct Eng Mater. 2003;5(4):239–51.

    Google Scholar 

  44. 44.

    Sýkora M, Diamantidis D, Holický M, Marková J, Rózsás Á. Assessment of compressive strength of historic masonry using non-destructive and destructive techniques. Construct Build Mater. 2018;193:196–210.

    Google Scholar 

  45. 45.

    Gioffrè M, Gusella V, Cluni F. Performance evaluation of monumental bridges: testing and monitoring ‘Ponte delle Torri’ in Spoleto. Struct Infrastruct Eng. 2008;4(2):95–106.

    Google Scholar 

  46. 46.

    Felicetti R, Gattesco N. A penetration test to study the mechanical response of mortar in ancient masonry buildings. Mater Struct. 1998;31:350–6.

    CAS  Google Scholar 

  47. 47.

    Liberatore D, Masini N, Sorrentino L, Racina V, Sileo M, AlShawa O, Frezza L. Static penetration test for historical masonry mortar. Constr Build Mater. 2016;122:810–22.

    Google Scholar 

  48. 48.

    Çobanoǧlu I, Çelik SB. Estimation of uniaxial compressive strength from point load strength, Schmidt hardness and P-wave velocity. Bull Eng Geol Environ. 2008;67(4):491–8.

    Google Scholar 

  49. 49.

    Ispir M, Demir C, Ilki A, Kumbasar N. Material characterization of the historical unreinforced masonry Akaretler Row Houses in Istanbul. J Mater Civ Eng. 2010;22(7):702–13.

    CAS  Google Scholar 

  50. 50.

    Russo S. Simplified procedure for structural integrity’s evaluation of monuments in constrained context: the case of a Buddhist Temple in Bagan (Myanmar). J Cult Herit. 2017;27:48–59.

    Google Scholar 

  51. 51.

    Marastoni D, Benedetti A, Pelà L, Pignagnoli G. Torque Penetrometric Test for the in situ characterisation of historical mortars: fracture mechanics interpretation and experimental validation. Constr Build Mater. 2017;157:509–20.

    Google Scholar 

  52. 52.

    Nogueira R, Pinto APF, Gomes A, Bogas JA. Prediction of compressive strength for heterogeneous mortars from drilling resistance data. Int J Arch Herit. 2018. https://doi.org/10.1080/15583058.2018.1547800.

    Article  Google Scholar 

  53. 53.

    Pelà L, Roca P, Aprile A. Combined in-situ and laboratory minor destructive testing of historical mortars. Int J Arch Herit. 2018;12(3):334–49.

    Google Scholar 

Download references


This work was supported by the European Union Framework Program for Research and Innovation HORIZON 2020 under Grant Agreement 700395 project HERACLES. The authors would like to acknowledge the Gubbio Municipality for the availability and support for the collection of the samples from the Town Walls. The authors would like to acknowledge Mr. Claudio Veroli for performing the XRD spectra and Dr. Domenico Mannetta for preparing the thin sections.

Author information



Corresponding author

Correspondence to Stefano Vecchio Ciprioti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Curulli, A., Montesperelli, G., Ronca, S. et al. A multidisciplinary approach to the mortars characterization from the Town Walls of Gubbio (Perugia, Italy). J Therm Anal Calorim (2020). https://doi.org/10.1007/s10973-020-09937-9

Download citation


  • TG–DTA
  • Mortars
  • Binder
  • Aggregate
  • Hydraulicity degree
  • Masonry structure
  • Non-destructive test
  • SEM
  • XRD