Mechanical-acoustic study of electroporcelain mixture made under different compression pressures

Abstract

This paper presents mechanical-acoustic study of samples made from electroporcelain mixture (type C 130) under five different compression pressures from 70 MPa up to 110 MPa. The samples were studied using the impulse excitation technique, thermodilatometry, thermogravimetry, and acoustic emission in the temperature interval from 1100 to 50 °C. X-ray powder diffraction was used for the determination of crystalline phases. Microstructure observations using scanning electron microscopy revealed small differences between compression pressures 70 MPa and 110 MPa. The results of impulse excitation technique show that using a higher compression pressure an increase in Young’s modulus is observed. The values of Young’s modulus after cooling to room temperature reach 18.4 GPa, 19.5 GPa, 19.7 GPa, 19.9 GPa, and 20.1 GPa for the compression pressure of 70 MPa, 80 MPa, 90 MPa, 100 MPa, and 110 MPa, respectively. The results also show that the acoustic emission activity starts at solidification of the glassy phase in the temperature interval of 800–700 °C.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Ranachowski P, Rejmund F, Ranachowski Z, Pawełek A, Piątkowski A, Kudela S. Mechanoacoustic and microscopic study of aluminous porcelain resistance to structural degradation. Arch Metall Mater. 2011;56:1227–33.

    CAS  Article  Google Scholar 

  2. 2.

    IEC 60672-3. Ceramic and glass-insulating materials-part 3: specifications for individual materials; 1997.

  3. 3.

    Ptáček P, Šoukal F, Opravil T, Nosková M, Havlica J, Brandštetr J. The kinetics of Al–Si spinel phase crystallization from calcined kaolin. J Solid State Chem. 2010;183:2565–9.

    Article  Google Scholar 

  4. 4.

    Konta J. Clay and man: clay raw materials in the service of man. Appl Clay Sci. 1995;10:275–335.

    CAS  Article  Google Scholar 

  5. 5.

    Ondro T, Trník A. Kinetic behaviour of thermal transformations of kaolinite. AIP Conf Proc. 2018;1988:020033.

    Article  Google Scholar 

  6. 6.

    Chen CY, Tuan WH. The processing of kaolin powder compact. Ceram Int. 2001;27:795–800.

    CAS  Article  Google Scholar 

  7. 7.

    Kakali G, Perraki T, Tsivilis S, Badogiannis E. Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Appl Clay Sci. 2001;20:73–80.

    CAS  Article  Google Scholar 

  8. 8.

    Low IM, McPherson RR. The structure and composition of Al-Si spinel. J Mater Sci Lett. 1988;7:1196–8.

    CAS  Article  Google Scholar 

  9. 9.

    Schneider H, Okada K, Pask JA. Mullite and mullite ceramics. 1st ed. New York: Wiley; 1994.

    Google Scholar 

  10. 10.

    Chakraborty AK, Das S. Al-Si spinel phase formation in diphasic mullite gels. Ceram Int. 2003;29:27–33.

    CAS  Article  Google Scholar 

  11. 11.

    Ondro T, Al-Shantir O, Csáki Š, Lukáč F, Trník A. Kinetic analysis of sinter-crystallization of mullite and cristobalite from kaolinite. Thermochim Acta. 2019;678:178312.

    CAS  Article  Google Scholar 

  12. 12.

    Gualtieri A, Bellotto M, Artioli G, Clark SM. Kinetic study of the kaolinite-mullite reaction sequence. Part II: mullite formation. Phys Chem Miner. 1995;22:215–22.

    CAS  Article  Google Scholar 

  13. 13.

    Chen YF, Wang MC, Hon MH. Phase transformation and growth of mullite in kaolin ceramics. J Eur Ceram Soc. 2004;24:2389–97.

    CAS  Article  Google Scholar 

  14. 14.

    Ptáček P, Křečková M, Šoukal F, Opravil T, Havlica J, Brandštetr J. The kinetics and mechanism of kaolin powder sintering I. The dilatometric CRH study of sinter-crystallization of mullite and cristobalite. Powder Technol. 2012;232:24–30.

    Article  Google Scholar 

  15. 15.

    Castelein O, Soulestin B, Bonnet JP, Blanchart P. The influence of heating rate on the thermal behaviour and mullite formation from a kaolin raw material. Ceram Int. 2001;27:517–22.

    CAS  Article  Google Scholar 

  16. 16.

    Pask JA, Tomsia AP. Formation of mullite from sol-gel mixtures and kaolinite. J Am Ceram Soc. 1991;74:2367–73.

    CAS  Article  Google Scholar 

  17. 17.

    Antal D, Štubňa I, Záleská M, Trník A. The influence of texture on elastic and thermophysical properties of kaolin- and illite-based ceramic bodies. Ceram Int. 2016;43:1–7.

    Google Scholar 

  18. 18.

    Bohor BF. High-temperature phase development in illitic clays. Clays Clay Miner. 1963;12:233–46.

    Article  Google Scholar 

  19. 19.

    Húlan T, Trník A, Medveď I. Kinetics of thermal expansion of illite-based ceramics in the dehydroxylation region during heating. J Therm Anal Calorim. 2017;127:291–8.

    Article  Google Scholar 

  20. 20.

    Gualtieri AF, Ferrari S. Kinetics of illite dehydroxylation. Phys Chem Miner. 2006;33:490–501.

    CAS  Article  Google Scholar 

  21. 21.

    Ondro T, Al-Shantir O, Obert F, Trník A. Non-isothermal kinetic analysis of illite dehydroxylation. AIP Conf Proc. 2019;2133(020036):2019.

    Google Scholar 

  22. 22.

    Ondro T, Al-Shantir O, Trník A. Kinetic analysis of illite dehydroxylation from differential scanning calorimetry. AIP Conf Proc. 2019;2116:070008.

    Article  Google Scholar 

  23. 23.

    Furlong RB. Electron diffraction and micrographic study of the high-temperature changes in illite and montmorillonite under continuous heating conditions. Clays Clay Miner. 1967;15:87–101.

    CAS  Article  Google Scholar 

  24. 24.

    Aras A. The change of phase composition in kaolinite- and illite-rich clay-based ceramic bodies. Appl Clay Sci. 2004;24:257–69.

    CAS  Article  Google Scholar 

  25. 25.

    Khalfaoui A, Kacim S, Hajjaji M. Sintering mechanism and ceramic phases of an illitic-chloritic raw clay. J Eur Ceram Soc. 2006;26:161–7.

    CAS  Article  Google Scholar 

  26. 26.

    Sedmale G, Sperberga I, Sedmalis U, Valancius Z. Formation of high-temperature crystalline phases in ceramic from illite clay and dolomite. J Eur Ceram Soc. 2006;26:3351–5.

    CAS  Article  Google Scholar 

  27. 27.

    Carroll DL, Kemp TF, Bastow TJ, Smith ME. Solid-state NMR characterisation of the thermal transformation of a Hungarian white illite. Solid State Nucl Magn Reson. 2005;28:31–43.

    CAS  Article  Google Scholar 

  28. 28.

    Ondro T, Húlan T, Al-Shantir O, Csáki Š, Václavů T, Trník A. Kinetic analysis of the formation of high-temperature phases in an illite-based ceramic body using thermodilatometry. J Therm Anal Calorim. 2019;138:2289–94.

    CAS  Google Scholar 

  29. 29.

    Ferrari S, Gualtieri AF. The use of illitic clays in the production of stoneware tile ceramics. Appl Clay Sci. 2006;32:73–81.

    CAS  Article  Google Scholar 

  30. 30.

    Wang G, Wang H, Zhang N. In situ high temperature X-ray diffraction study of illite. Appl Clay Sci. Elsevier. 2017;146:254–63.

    CAS  Article  Google Scholar 

  31. 31.

    Podoba R, Trník A, Podobník Ľ. Upgrading of TGA/DTA analyzer derivatograph. Építőanyag. 2012;64:28–9.

    Google Scholar 

  32. 32.

    Jankula M, Šín P, Podoba R, Ondruška J. Typical problems in push-rod dilatometry analysis. Építôanyag. 2013;65:11–4.

    Google Scholar 

  33. 33.

    Štubňa I, Húlan T, Trník A, Vozár L. Uncertainty in the determination of young’s modulus of ceramics using the impulse excitation technique at elevated temperatures. Acta Acust united with Acust. 2018;104:269–76.

    Article  Google Scholar 

  34. 34.

    ASTM C1259. Standard test method for dynamic Young’s modulus, Shear modulus, and Poisson’s ratio for advanced ceramics by impulse excitation of vibration. West Conshohocker: ASTM International; 2015.

    Google Scholar 

  35. 35.

    Štubňa I, Trník A, Vozár L. Thermomechanical analysis of quartz porcelain in temperature cycles. Ceram Int. 2007;33:1287–91.

    Article  Google Scholar 

  36. 36.

    Štubňa I, Trník A, Vozár L. Thermomechanical and thermodilatometric analysis of green alumina porcelain. Ceram Int. 2009;35:1181–5.

    Article  Google Scholar 

  37. 37.

    Knapek M, Húlan T, Minárik P, Dobroň P, Štubňa I, Stráská J, et al. Study of microcracking in illite-based ceramics during firing. J Eur Ceram Soc. 2016;36:221–6.

    CAS  Article  Google Scholar 

  38. 38.

    Aissani S, Guendouz L, Marande P-L, Canet D. 14N quadrupole resonance line broadening due to the earth magnetic field, occuring only in the case of an axially symmetric electric field gradient tensor. Solid State Nucl Magn Reson, Elsevier. 2015;68–69:57–60.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grants VII/1/2019 from UKF grant agency and by RVO:11000. Authors wish to thank the ceramic plant PPC Čab, a.s. for providing the samples.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Anton Trník.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Al-Shantir, O., Csáki, Š., Ondro, T. et al. Mechanical-acoustic study of electroporcelain mixture made under different compression pressures. J Therm Anal Calorim (2020). https://doi.org/10.1007/s10973-020-09908-0

Download citation

Keywords

  • Electroporcelain
  • C 130
  • Compression pressure
  • Young′s modulus
  • Acoustic emission