Thermal properties and non-isothermal crystallization kinetics of biocomposites based on poly(lactic acid), rice husks and cellulose fibres

Abstract

Bioplastics reinforced by agricultural waste fibres show promise to provide degradation back into the environment when they are no longer needed. These biocomposites have the potential to replace synthetic polymers from non-renewable resources in some applications and may turn out to be one of the material revolutions of this century. Unlike synthetic composites, biocomposites are renewable, carbon neutral, biodegradable and non-petroleum based and have low environmental, human health and safety risks. In this paper, poly(lactic acid) (PLA)-based biocomposites filled with technical cellulose fibres (CeF) and rice husks (RHs) at 10–30 mass% loading were prepared by twin-screw extrusion and injection moulding to enhance stiffness of resulting biocomposites. Particular attention was given to the enhancement of adhesion between the polymer matrix and natural filler through the physical modification by ozone (O3) and dielectric barrier discharge (DBD) plasma (p) surface treatments. Further than, compatibilizing agent based on PLA-g-MAH was produced and introduced into the PLA systems. The non-isothermal crystallization behaviour and thermal properties were investigated through differential scanning calorimetry (DSC) under various cooling rates (5, 10, 20 and 40 °C min−1). The addition of both fillers increased overall crystallization kinetics of resulted biocomposites, especially at high cooling rates. An increase in crystallinity degree from 2.4 (neat PLA) up to 51% has been observed for PLA/30CeFO3 samples at 40 °C min−1 cooling rate. An increase in crystallinity degree based on mass percentage of filler was noticed especially for PLA/RH. Mass percentage increase in CeF did not notice significant increase in PLA crystallinity. The influence of RH and CeF on transformation behaviours of PLA αʹ-/α-polymorphs was observed. The elimination of imperfect αʹ-crystals was observed with increasing amount of RH and CeF.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

References

  1. 1.

    Thakur VK, Thakur MK, Kessler MR. Handbook of composites from renewable materials, Volume 1: structure and chemistry. 1st ed. Hoboken: Wiley; 2017.

    Google Scholar 

  2. 2.

    Ebnesajjad S. Handbook of biopolymers and biodegradable plastics: properties, processing, and applications. 1st ed. Waltham, MA: Elsevier/William Andrew; 2013.

    Google Scholar 

  3. 3.

    Xu H, Yang Y, Yu X. Lightweight materials from biopolymers and biofibers. 1st ed. Washington, DC: American Chemical Society; 2014.

    Google Scholar 

  4. 4.

    Mohanty AK, Misra M, Drzal LT. Natural fibers, biopolymers, and biocomposites. 1st ed. Boca Raton: Taylor and Francis; 2005.

    Google Scholar 

  5. 5.

    Dartora PC, da Rosa Loureiro M, de Camargo Forte MM. Crystallization kinetics and morphology of poly(lactic acid) with polysaccharide as nucleating agent. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7744-3.

    Article  Google Scholar 

  6. 6.

    Prapruddivongs C, Rukrabiab J, Kulwongwit N, Wongpreedee T. Effect of surface-modified silica on the thermal and mechanical behaviors of poly(lactic acid) and chemically crosslinked poly(lactic acid) composites. J Thermoplast Compos Mater. 2019. https://doi.org/10.1177/0892705719835286.

    Article  Google Scholar 

  7. 7.

    Jia S, Yu D, Zhu Y, Wang Z, Chen L, Fu L. Morphology, crystallization and thermal behaviors of PLA-based composites: wonderful effects of hybrid GO/PEG via dynamic impregnating. Polymers. 2017. https://doi.org/10.3390/polym9100528.

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Fang Q, Hanna MA. Rheological properties of amorphous and semicrystalline polylactic acid polymers. Ind Crops Prod. 1999. https://doi.org/10.1016/S0926-6690(99)00009-6.

    Article  Google Scholar 

  9. 9.

    Ding W, Chu RK, Mark LH, Park CB, Sain M. Non-isothermal crystallization behaviors of poly(lactic acid)/cellulose nanofiber composites in the presence of CO2. Eur Polym J. 2015. https://doi.org/10.1016/j.eurpolymj.2015.07.054.

    Article  Google Scholar 

  10. 10.

    Hamdan MHM, Siregar JP, Rejab MRM, Bachtiar D, Jamiluddin J, Tezara C. Effect of maleated anhydride on mechanical properties of rice husk filler reinforced PLA matrix polymer composite. Int J Precis Eng Manuf-Green Technol. 2019. https://doi.org/10.1007/s40684-019-00017-4.

    Article  Google Scholar 

  11. 11.

    Haylock R, Rosentrater KA. Cradle-to-grave life cycle assessment and techno-economic analysis of polylactic acid composites with traditional and bio-based fillers. J Polym Environ. 2018. https://doi.org/10.1007/s10924-017-1041-2.

    Article  Google Scholar 

  12. 12.

    Li Y, Han C, Yu Y, Xiao L, Shao Y. Effect of content and particle size of talc on nonisothermal melt crystallization behavior of poly(L-lactide). J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-018-7365-x.

    Article  Google Scholar 

  13. 13.

    Greco A, Ferrari F, Maffezzoli A. Thermal analysis of poly(lactic acid) plasticized by cardanol derivatives. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7059-4.

    Article  Google Scholar 

  14. 14.

    Graupner N, Herrmann AS, Müssig J. Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Compos A Appl Sci Manuf. 2009. https://doi.org/10.1016/j.compositesa.2009.04.003.

    Article  Google Scholar 

  15. 15.

    Murariu M, Dubois P. PLA composites: from production to properties. Adv Drug Deliv Rev. 2016. https://doi.org/10.1016/j.addr.2016.04.003.

    Article  PubMed  Google Scholar 

  16. 16.

    Thakur VK, Singha AS. Surface modification of biopolymers. 1st ed. Hoboken: Wiley; 2015.

    Google Scholar 

  17. 17.

    Kalia S, Thakur K, Celli A, Kiechel MA, Schauer CL. Surface modification of plant fibers using environment friendly methods for their application in polymer composites, textile industry and antimicrobial activities: a review. J Environ Chem Eng. 2013. https://doi.org/10.1016/j.jece.2013.04.009.

    Article  Google Scholar 

  18. 18.

    Jang JY, Jeong TK, Oh HJ, Youn JR, Song YS. Thermal stability and flammability of coconut fiber reinforced poly(lactic acid) composites. Compos Part B Eng. 2012. https://doi.org/10.1016/j.compositesb.2011.11.003.

    Article  Google Scholar 

  19. 19.

    Tran TPT, Bénézet JC, Bergeret A. Rice and Einkorn wheat husks reinforced poly(lactic acid) (PLA) biocomposites: effects of alkaline and silane surface treatments of husks. Ind Crops Prod. 2014. https://doi.org/10.1016/j.indcrop.2014.04.012.

    Article  Google Scholar 

  20. 20.

    Bourmaud A, Pimbert S. Investigations on mechanical properties of poly(propylene) and poly(lactic acid) reinforced by miscanthus fibers. Compos Part Appl Sci Manuf. 2008. https://doi.org/10.1016/j.compositesa.2008.05.023.

    Article  Google Scholar 

  21. 21.

    Mazzanti V, Pariante R, Bonanno A, Ballesteros OR, Mollica F, Filippone G. Reinforcing mechanisms of natural fibers in green composites: role of fibers morphology in a PLA/hemp model system. Compos Sci Technol. 2019. https://doi.org/10.1016/j.compscitech.2019.05.015.

    Article  Google Scholar 

  22. 22.

    Di Lorenzo ML, Androsch R. Synthesis, structure and properties of poly(lactic acid). 1st ed. New York: Springer; 2017.

    Google Scholar 

  23. 23.

    Di Lorenzo ML, Androsch R. Influence of α′-/α-crystal polymorphism on properties of poly(l-lactic acid). Polym Int. 2019. https://doi.org/10.1002/pi.5707.

    Article  Google Scholar 

  24. 24.

    Zhang C, Lan Q, Zhai T, Nie S, Luo J, Yan W. Melt crystallization behavior and crystalline morphology of polylactide/poly(ε-caprolactone) blends compatibilized by lactide-caprolactone copolymer. Polymers. 2018. https://doi.org/10.3390/polym10111181.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Nagarajan V, Zhang K, Misra M, Mohanty AK. Overcoming the fundamental challenges in improving the impact strength and crystallinity of PLA biocomposites: influence of nucleating agent and mold temperature. ACS Appl Mater Interfaces. 2015. https://doi.org/10.1021/acsami.5b01145.

    Article  PubMed  Google Scholar 

  26. 26.

    Arjmandi R, Hassan A, Majeed K, Zakaria Z. Rice husk filled polymer composites. Int Polym Sci. 2015. https://doi.org/10.1155/2015/501471.

    Article  Google Scholar 

  27. 27.

    Cortés JD, Carriazo JG, Sierra CA, Ochoa-Puentes C. Micro-composites based on polylactic acid with kaolinite or rice husk particles and their performance on water vapor permeability. J Macromol Sci Part A. 2017. https://doi.org/10.1080/10601325.2017.1317580.

    Article  Google Scholar 

  28. 28.

    Chandrasekhar S, Satayanarayana KG, Pramada PN, Raghavan P, Gupta TN. Review processing, properties and applications of reactive silica from rice husk—an overview. J Mater Sci. 2003. https://doi.org/10.1023/A:1025157114800.

    Article  Google Scholar 

  29. 29.

    Wen X, Zhang K, Wang Y, Han L, Han C, Zhang H, Chen S, Dong L. Study of the thermal stabilization mechanism of biodegradable poly(l-lactide)/silica nanocomposites. Polym Int. 2010. https://doi.org/10.1002/pi.2927.

    Article  Google Scholar 

  30. 30.

    Zhang J, Lou J, Ilias S, Krischnamachari P, Yan J. Thermal properties of poly(lactic acid) fumed silica nanocomposites: experiments and molecular dynamics simulations. Polymer. 2008. https://doi.org/10.1016/j.polymer.2008.02.048.

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Data sheet Arbocel ZZC 500.

  32. 32.

    Peters F, Hünnekens B, Wieneke S, Militz H, Ohms G, Viöl W. Corrigendum: comparison of three dielectric barrier discharges regarding their physical characteristics and influence on the adhesion properties on maple, high density fiberboards and wood plastic composite. J Phys D Appl Phys. 2017. https://doi.org/10.1088/1361-6463/aab378.

    Article  Google Scholar 

  33. 33.

    Battegazzore D, Bocchini S, Alongi J, Frache A. Rice husk as bio-source of silica: preparation and characterization of PLA–silica bio-composites. RSC Adv. 2014. https://doi.org/10.1039/C4RA05991C.

    Article  Google Scholar 

  34. 34.

    Reig FB, Adelantado JVG, Moreno MCMM. FTIR quantitative analysis of calcium carbonate (calcite) and silica (quartz) mixtures using the constant ratio method. Application to geological samples. Talanta. 2002. https://doi.org/10.1016/S0039-9140(02)00372-7.

    Article  PubMed  Google Scholar 

  35. 35.

    Zhang J, Tashiro K, Tsuji H, Domb AJ. Disorder-to-order phase transition and multiple melting behavior of poly(l-lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules. 2008. https://doi.org/10.1021/ma0706071.

    Article  Google Scholar 

  36. 36.

    Saeidlou S, Huneault MA, Li H, Park CB. Poly(lactic acid) crystallization. Prog Polym Sci. 2012. https://doi.org/10.1016/j.progpolymsci.2012.07.005.

    Article  Google Scholar 

  37. 37.

    Eiras DP, Pessan LA. Influence of calcium carbonate nanoparticles on the crystallization of polypropylene. Mater Res. 2009. https://doi.org/10.1590/S1516-14392009000400024.

    Article  Google Scholar 

  38. 38.

    Maqsood HS. Cellulose micro/nano particles from jute. Liberec: TU of Liberec; 2016.

    Google Scholar 

  39. 39.

    Zhou WY, et al. Isothermal and non-isothermal crystallization kinetics of poly(l-lactide)/carbonated hydroxyapatite nanocomposite microspheres. In: Reddy B, editor. Advances in diverse industrial applications of nanocomposites. Rijeka: InTech Europe; 2001. p. 231–60.

    Google Scholar 

  40. 40.

    Di Lorenzo ML. Crystallization behavior of poly(l-lactic acid). Eur Polym J. 2005. https://doi.org/10.1016/j.eurpolymj.2004.10.020.

    Article  Google Scholar 

  41. 41.

    Sarasua JR, Prud’homme RE, Wisniewski M, Le Borgne A, Spassky N. Crystallization and melting behavior of polylactides. Macromolecules. 1998. https://doi.org/10.1021/ma971545p.

    Article  Google Scholar 

  42. 42.

    Dimzoski S, Bogoeva-Gaceva G, Gentile G, Avelle M, Errico ME, Srebrenkoska V. Preparation and characterization of poly(lactic acid)/rice hulls based biodegradable composites. J Polym Eng. 2008;28:369–83.

    CAS  Google Scholar 

Download references

Acknowledgements

This publication was written at the Technical University of Liberec as part of the project SGS 21280 “Research and development for innovation of materials and production technologies with application potential in mechanical engineering” with the support of the Specific University Research Grant, as provided by the Ministry of Education, Youth and Sports of the Czech Republic in the year 2019 and the European Union—European Structural and Investment Funds in the frames of Operational Programme Research, Development and Education—project Hybrid Materials for Hierarchical Structures (HyHi, Reg. No. CZ.02.1.01/0.0/0.0/16_019/0000843).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Luboš Běhálek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Běhálek, L., Borůvka, M., Brdlík, P. et al. Thermal properties and non-isothermal crystallization kinetics of biocomposites based on poly(lactic acid), rice husks and cellulose fibres. J Therm Anal Calorim (2020). https://doi.org/10.1007/s10973-020-09894-3

Download citation

Keywords

  • Biocomposites
  • Poly(lactic acid)
  • Cellulose
  • Rice husks
  • Surface treatment