Comparative performance evaluation of fly ash-based hybrid nanofluids in microchannel-based direct absorption solar collector

Abstract

In this study, the performance of the hybrid nanofluid of alumina/fly ash-based nanofluid and silica/fly ash-based nanofluid in the direct absorption solar collector is compared. SiO2, Fe2O3, Al2O3 and CaO are main components of the fly ash. The effect of different proportions of major components in fly ash and flow rate on the thermal and exergy efficiency is studied. Microchannel-based flat plate solar collector is used for the experimentation with a channel height of 800 microns. Experiments are conducted to evaluate the thermal efficiency, pumping power, performance evaluation criteria, entropy generation rate and exergy efficiency of fly ash-based nanofluids in direct absorption solar collector. The experimental results revealed that the thermal efficiency of the alumina/fly ash (80:20)-based nanofluid for direct absorption solar collector is 72.82% while silica/fly ash (80:20) nanofluids showed 59.23% thermal efficiency. Exergy efficiency achieved by the alumina/fly ash (80:20)-based nanofluids is 73%. This is significantly more than the silica/fly ash-based nanofluids. Silica/fly ash (80:20)-based nanofluids achieved an exergy efficiency of 68.09%. The study revealed that an increase in the concentration of alumina in the fly-ash nanofluid will increase the thermophysical property and efficiency of the nanofluid and an increase in the silica concentration will lead to decrease in the thermophysical property and efficiency of the fly ash-based nanofluid.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

Qu:

Rate of useful energy gain (W)

m :

Mass flow rate (kg s−1)

C p :

Heat capacity of the nanofluids (J kg−1 K−1)

T o :

Outlet fluid temperature of the solar collector (°C)

η :

Collector efficiency

F R :

Heat-removal factor

(τα):

Absorption-transmittance product

I T :

Incident solar radiation (W m−2)

U L :

Overall loss coefficient of the solar collector (W m−2 K−1)

T i :

Inlet fluid temperature of the solar collector (0C)

T a :

Ambient temperature (°C)

Ex:

Exergy rate (J Kg−1 s−1)

k :

Thermal conductivity (W m−1 k−1)

S gen :

Entropy generation rate (J kg−1 K−1 s−1)

ρ :

Density of fluid

μ :

Dynamic viscosity (Pa s−1)

Φ :

Particle volume fraction

f :

Friction factor

M :

Molecular weight

N :

Avogadro’s number

DASC:

Direct absorption solar collector

ASHRAE:

American society for heating, refrigeration and air conditioning engineers

IEA:

International energy agency

Re:

Reynolds number

PEC:

Performance evaluation criteria

References

  1. 1.

    Thakur P, Sonawane SS, Sonawane SH, Bhanvase BA. Nanofluids-based delivery system, encapsulation of nanoparticles for stability to make stable nanofluids. Encapsul Act Mol Deliv Syst. 2020;141.

  2. 2.

    Malika M, Sonawane SS. Review on Application of nanofluid/nano particle as water disinfectant. J Indian Assoc Environ Manag (JIAEM). 2019;39(1–4):21–4.

    Google Scholar 

  3. 3.

    Thakur P, Sonawane SS. Application of nanofluids in CO2 capture and extraction from waste water. J Indian Assoc Environ Manag (JIAEM). 2019;39(1–4):4–8.

    Google Scholar 

  4. 4.

    Wahab A, Hassan A, Qasim MA, Ali HM, Babar H, Sajid MU. Solar energy systems– potential of nanofluids. J Mol Liq. 2019;111049.

  5. 5.

    Kumar N, Sonawane SS. Convective heat transfer of metal oxide-based nanofluids in a shell and tube heat exchanger. In: Conference proceedings of the second international conference on recent advances in bioenergy research. 2018. p. 183–92.

  6. 6.

    Sonawane SS, Juwar V. Optimization of conditions for an enhancement of thermal conductivity and minimization of viscosity of ethylene glycol based Fe3O4 nanofluid. Appl Therm Eng. 2016;109:121–29.

    CAS  Google Scholar 

  7. 7.

    Khedkar RS, Sonawane SS, Wasewar KL. Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids. Int Commun Heat Mass Transf. 2012;39(5):665–69.

    CAS  Google Scholar 

  8. 8.

    Kumar N, Urkude N, Sonawane SS, Sonawane SH. Experimental study on pool boiling and Critical Heat Flux enhancement of metal oxides based nanofluid. Int Commun Heat Mass Transf. 2018;96:37–42.

    CAS  Google Scholar 

  9. 9.

    Kumar N, Sonawane SS, Sonawane SH. Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid. Int Commun Heat Mass Transf. 2018;90:1–10.

    CAS  Google Scholar 

  10. 10.

    Gupta M, Singh V, Kumar R, Said Z. A review on thermophysical properties of nanofluids and heat transfer applications. Renew Sustain Energy Rev. 2017;74:638–70.

    CAS  Google Scholar 

  11. 11.

    Said Z, Assad MEH, Hachicha AA, Bellos E, Abdelkareem MA, Alazaizeh DZ, Yousef BA. Enhancing the performance of automotive radiators using nanofluids. Renew Sustain Energy Rev. 2019;112:183–94.

    CAS  Google Scholar 

  12. 12.

    Sajid MU, Ali HM. Recent advances in application of nanofluids in heat transfer devices: a critical review. Renew Sustain Energy Rev. 2019;103:556–92.

    CAS  Google Scholar 

  13. 13.

    Javed S, Ali HM, Babar H, Khan MS, Janjua MM, Bashir MA. Internal convective heat transfer of nanofluids in different flow regimes: A comprehensive review. Phys A: Stat Mech Appl. 2020;538:122783.

    CAS  Google Scholar 

  14. 14.

    Shah TR, Ali HM. Applications of hybrid nanofluids in solar energy, practical limitations and challenges: a critical review. Sol Energy. 2019;183:173–203.

    CAS  Google Scholar 

  15. 15.

    Babar H, Sajid MU, Ali HM. Viscosity of hybrid nanofluids: a critical review. Therm Sci. 2019;23(3 Part B):1713–54.

    Google Scholar 

  16. 16.

    Ramezanizadeh M, Ahmadi MH, Nazari MA, Sadeghzadeh M, Chen L. A review on the utilized machine learning approaches for modeling the dynamic viscosity of nanofluids. Renew Sustain Energy Rev. 2019;114:109345.

    CAS  Google Scholar 

  17. 17.

    Ahmadi MH, Sadeghzadeh M, Maddah H, Solouk A, Kumar R, Chau KW. Precise smart model for estimating dynamic viscosity of SiO2/ethylene glycol–water nanofluid. Eng Appl Computational Fluid Mechanics. 2019;13(1):1095–105.

    Google Scholar 

  18. 18.

    Ahmadi MH, Ghazvini M, Sadeghzadeh M, Nazari MA, Ghalandari M. Utilization of hybrid nanofluids in solar energy applications: A review. Nano-Struct Nano-Objects. 2019;20:100386.

    Google Scholar 

  19. 19.

    Gupta M, Singh V, Kumar S, Kumar S, Dilbaghi N, Said Z. Up to date review on the synthesis and thermophysical properties of hybrid nanofluids. J Clean Product. 2018;190:169–92.

    CAS  Google Scholar 

  20. 20.

    Sadeghzadeh M, Maddah H, Ahmadi MH, Khadang A, Ghazvini M, Mosavi A, Nabipour N. Prediction of thermo-physical properties of TiO2-Al2O3/water nanoparticles by using artificial neural network. Nanomater. 2020;10(4):697.

    CAS  Google Scholar 

  21. 21.

    Sajid MU, Ali HM. Thermal conductivity of hybrid nanofluids: a critical review. In J Heat Mass Transf. 2018;126:211–34.

    CAS  Google Scholar 

  22. 22.

    Said Z, Saidur R, Rahim N. A Optical properties of metal oxides based nanofluids. In J Heat Mass Transf. 2014;59:46–54.

    CAS  Google Scholar 

  23. 23.

    Ali, HM, Sajid MU, Arshad A. Heat transfer applications of TiO2 nanofluids. Application of Titanium Dioxide, Ch. 09. Rijekam: InTech; 2017.

  24. 24.

    Ali HM, Babar H, Shah TR, Sajid MU, Qasim MA, Javed S. Preparation techniques of TiO2 nanofluids and challenges: a review. Appl Sci. 2018;8(4):587.

    Google Scholar 

  25. 25.

    Sajid MU, Ali HM, Sufyan A, Rashid D, Zahid SU, Rehman WU. Experimental investigation of TiO2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. J Therm Anal Calorim. 2019;137(4):1279–94.

    CAS  Google Scholar 

  26. 26.

    Soudagar MEM, Kalam MA, Sajid MU, Afzal A, Banapurmath NR, Akram N, Saleel CA. Thermal analyses of minichannels and use of mathematical and numerical models. Numer Heat Transf Part A: Appl. 2020;77(5):497–537.

    CAS  Google Scholar 

  27. 27.

    Said Z, Allagui A, Abdelkareem MA, Alawadhi H, Elsaid K. Acid-functionalized carbon nanofibers for high stability, thermoelectrical and electrochemical properties of nanofluids. J Colloid Interface Sci. 2018;520:50–7.

    CAS  PubMed  Google Scholar 

  28. 28.

    Said Z, Sajid MH, Saidur R, Mahdiraji GA, Rahim NA. Evaluating the optical properties of TiO2 nanofluid for a direct absorption solar collector. Numer Heat Transf Part A: Appl. 2015;67(9):1010–27.

    CAS  Google Scholar 

  29. 29.

    Said Z. Thermophysical and optical properties of SWCNTs nanofluids. Int Commun Heat Mass Transf. 2016;78:207–13.

    CAS  Google Scholar 

  30. 30.

    Ahmadi MH, Baghban A, Sadeghzadeh M, Zamen M, Mosavi A, Shamshirband S, Mohammadi-Khanaposhtani M. Evaluation of electrical efficiency of photovoltaic thermal solar collector. Eng Appl Comput Fluid Mech. 2020;14(1):545–65.

    Google Scholar 

  31. 31.

    IEA. Renewables 2019, IEA, Paris. 2019. https://www.iea.org/reports/renewables-2019.

  32. 32.

    Raj P, Subudhi S. A review of studies using nanofluids in flat-plate and direct absorption solar collectors. Renew Sustain Energy Rev. 2018;84:54–74.

    CAS  Google Scholar 

  33. 33.

    Sadeghzadeh M, Ahmadi MH, Kahani M, Sakhaeinia H, Chaji H, Chen L. Smart modeling by using artificial intelligent techniques on thermal performance of flat-plate solar collector using nanofluid. Energy Sci Eng. 2019;7(5):1649–58.

    Google Scholar 

  34. 34.

    Ghodbane M, Said Z, Hachicha AA, Boumeddane B. Performance assessment of linear Fresnel solar reflector using MWCNTs/DW nanofluids. Renew Energy. 2019.

  35. 35.

    Abid M, Khan MS, Hussain Ratlamwala TA. Thermodynamic performance evaluation of a solar parabolic dish assisted multigeneration system. J Sol Energy Eng. 2019;141(6).

  36. 36.

    Verma SK, Tiwari AK, Tiwari S, Chauhan DS. Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid. Sol Energy. 2018;167:231–41.

    CAS  Google Scholar 

  37. 37.

    Abid M, Khan MS, Ratlamwala TAH. Comparative energy, exergy and exergo-economic analysis of solar driven supercritical carbon dioxide power and hydrogen generation cycle. Int J Hydrog Energy. 2020;45(9):5653–67.

    CAS  Google Scholar 

  38. 38.

    Akram N, Sadri R, Kazi SN, Zubir MNM, Ridha M, Ahmed W, Arzpeyma M. A comprehensive review on nanofluid operated solar flat plate collectors. J Therm Anal Calorim. 2019;1–35.

  39. 39.

    Khan MS, Abid M, Ratlamwala TAH. Energy, exergy and economic feasibility analyses of a 60 MW conventional steam power plant integrated with parabolic trough solar collectors using nanofluids. Iran J Sci Technol, Trans Mech Eng. 2019;43(1):193-209.

    Google Scholar 

  40. 40.

    Abid M, Khan MS, Ratlamwala TA, Amber KP. Thermo-environmental investigation of solar parabolic dish-assisted multi-generation plant using different working fluids. Int J Energy Res. 2020.

  41. 41.

    Khan MS, Yan M, Ali HM, Amber KP, Bashir MA, Akbar B, Javed S. Comparative performance assessment of different absorber tube geometries for parabolic trough solar collector using nanofluid. J Therm Anal Calorim. 2020.

  42. 42.

    Khan MS, Abid M, Ali HM, Amber KP, Bashir MA, Javed S. Comparative performance assessment of solar dish assisted s-CO2 Brayton cycle using nanofluids. Appl Therm Eng. 2019;148:295–306.

    CAS  Google Scholar 

  43. 43.

    Khan MS, Amber KP, Ali HM, Abid M, Ratlamwala TA, Javed S. Performance analysis of solar assisted multigenerational system using therminol VP1 based nanofluids: A comparative study. Therm Sci. 2019;62–2.

  44. 44.

    Abu-Nada E. Effects of variable viscosity and thermal conductivity of Al2O3–water nanofluid on heat transfer enhancement in natural convection. Int J Heat Fluid Flow. 2009;30(4):679–90.

    CAS  Google Scholar 

  45. 45.

    Talib SFA, Azmi WH, Zakaria I, Mohamed WANW, Mamat AMI, Ismail H, Daud WRW. Thermophysical properties of silicon dioxide (SiO2) in ethylene glycol/water mixture for proton exchange membrane fuel cell cooling application. Energy Procedia. 2015;79:366–71.

    CAS  Google Scholar 

  46. 46.

    Palaniappan B, Ramasamy V. Thermodynamic analysis of fly ash nanofluid for automobile (heavy vehicle) radiators.  Therm Anal Calorim. 2019;136(1):223–33.

    CAS  Google Scholar 

  47. 47.

    Kumar N, Sonawane SS. Experimental study of thermal conductivity and convective heat transfer enhancement using CuO and TiO2 nanoparticles. Int Commun Heat Mass Transf. 2016;76:98–107.

    CAS  Google Scholar 

  48. 48.

    Khedkar RS, Shrivastava N, Sonawane SS, Wasewar KL. Experimental investigations and theoretical determination of thermal conductivity and viscosity of TiO2–ethylene glycol nanofluid. Int Commun Heat Mass Transf. 2016;73:54–61.

    CAS  Google Scholar 

  49. 49.

    Kumar N, Sonawane SS. Experimental study of Fe2O3/water and Fe2O3/ethylene glycol nanofluid heat transfer enhancement in a shell and tube heat exchanger. Int Commun Heat Mass Transf. 2016;78:277–84.

    CAS  Google Scholar 

  50. 50.

    Khedkar RS, Sonawane SS, Wasewar KL. Heat transfer study on concentric tube heat exchanger using TiO2–water based nanofluid. Int Commun Heat Mass Transf. 2014;57:163–69.

    CAS  Google Scholar 

  51. 51.

    Sonawane SS, Khedkar RS, Wasewar KL. Study on concentric tube heat exchanger heat transfer performance using Al2O3–water based nanofluids. Int Commun Heat Mass Transf. 2013;4:60–8.

    Google Scholar 

  52. 52.

    Khedkar RS, Kiran AS, Sonawane SS, Wasewar KL, Umare SS. Thermo-physical properties measurement of water based Fe3O4 nanofluids. Carbon-Sci Technol. 2013;5:187–91.

    CAS  Google Scholar 

  53. 53.

    Khedkar RS, Sonawane SS, Wasewar KL. Synthesis of TiO2–water nanofluids for its viscosity and dispersion stability study. J Nano Res. 2013;24:26–33.

    CAS  Google Scholar 

  54. 54.

    Khedkar RS, Sonawane SS, Wasewar KL. Water to Nanofluids heat transfer in concentric tube heat exchanger: Experimental study. Procedia Eng. 2013;51:318–23.

    CAS  Google Scholar 

  55. 55.

    Choudhary R, Khurana D, Kumar A, Subudhi S. Stability analysis of Al2O3/water nanofluids. J Exp Nanosci. 2017;12(1):140–51.

    CAS  Google Scholar 

  56. 56.

    Bashirnezhad K, Rashidi MM, Yang Z, Bazri S, Yan WM. A comprehensive review of last experimental studies on thermal conductivity of nanofluids. J Therm Anal Calorim. 2015;122(2):863–84.

    CAS  Google Scholar 

  57. 57.

    Sonawane SS, Khedkar RS, Wasewar KL, Rathod AP. Dispersions of CuO nanoparticles in paraffin prepared by ultrasonication: a potential coolant. Int Proc Chem, Biol Environ Eng. 2012;46.

  58. 58.

    Bhanvase BA, Barai DP, Sonawane SH, Kumar N, Sonawane SS. Intensified heat transfer rate with the use of nanofluids. In: Handbook of nanomaterials for industrial applications. 2018. p. 739–50.

  59. 59.

    Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Transf Int J. 1998;11(2):151–70.

    CAS  Google Scholar 

  60. 60.

    Sonawane SS, Juwar V. Development of nanobased thermic fluid: Thermal aspects of new energy system. In: Conference proceedings of the second international conference on recent advances in bioenergy research. 2018. p. 107–14

  61. 61.

    Xuan Y, Roetzel W. Conceptions for heat transfer correlation of nanofluids. Int J heat Mass transf. 2000;43(19):3701–07.

    CAS  Google Scholar 

  62. 62.

    Nishant K, Sonawane Shriram S. Influence of CuO and TiO2 nanoparticles in enhancing the overall heat transfer coefficient and thermal conductivity of water and ethylene glycol based nanofluids. Res J Chem Environ. 2016;20:8.

    Google Scholar 

  63. 63.

    Vijay J, Sonawane Shriram S. Investigations on rheological behaviour of paraffin based Fe3O4 nanofluids and its modelling. Res J Chem Environ. 2015;19:12.

    Google Scholar 

  64. 64.

    Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52(1):789–93.

    CAS  Google Scholar 

  65. 65.

    Sonawane SS, Khedkar RS, Wasewar KL. Effect of sonication time on enhancement of effective thermal conductivity of nano TiO2–water, ethylene glycol, and paraffin oil nanofluids and models comparisons. J Exp Nanosci. 2015;10(4):310–22.

    CAS  Google Scholar 

  66. 66.

    Khedkar RS, Kiran AS, Sonawane SS, Wasewar K, Umre SS. Thermo–physical characterization of paraffin based Fe3O4 nanofluids. Procedia Eng. 2013;51:342–46.

    CAS  Google Scholar 

  67. 67.

    Sen N, Ekhande S, Thakur P, Singh KK, Mukhopadhyay S, Sirsam R, Shenoy KT. Direct precipitation of uranium from loaded organic in a microreactor. Sep Sci Technol. 2019;54(9):1430–42.

    CAS  Google Scholar 

  68. 68.

    ASHRAE. ASHRAE Standard 93-86, Methods of testing to determine the thermal performance of solar collectors. Atlanta, Georgia, USA; 1986.

  69. 69.

    Jafarkazemi F, Ahmadifard E. Energetic and energetic evaluation of flat plate solar collectors. Renew Energy. 2013;56:55–63.

    Google Scholar 

  70. 70.

    Said Z, Alim MA, Janajreh I. Exergy efficiency analysis of a flat plate solar collector using graphene based nanofluid. In: IOP conference series: materials science and engineering,  vol. 92, No. 1. IOP Publishing; 2015. p. 012015.

  71. 71.

    Bejan A. Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture. Int J Energy Res 2002;26(7).

Download references

Acknowledgements

Thanks for SERB DST for providing financial Grant File Number: EEQ/2017/000152.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shriram S. Sonawane.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thakur, P.P., Khapane, T.S. & Sonawane, S.S. Comparative performance evaluation of fly ash-based hybrid nanofluids in microchannel-based direct absorption solar collector. J Therm Anal Calorim 143, 1713–1726 (2021). https://doi.org/10.1007/s10973-020-09884-5

Download citation

Keywords

  • Solar collector
  • Fly ash
  • Metal oxides
  • Hybrid nanofluids
  • Microchannel