Role of hybrid nanoparticles in thermal performance of peristaltic flow of Eyring–Powell fluid model


Nanoparticles have great potential to improve thermophysical properties and thermal execution. At different polymer fixations, hybridization of Eyring–Powell nanofluid model with peristaltic flow is done due to its high accuracy and consistency as found in the measurements of fluid time frame. The transport equations of the problem have been incorporated under the assumptions of long wave length and lubrication approximations. The conditions of wavelength include the impacts of thermophoretic dissemination of nanoparticles with Brownian movement. The coupled nonlinear boundary value problem has been analytically solved employing the homotopic approach. Key consideration includes material constant, thermophoresis parameter, Brownian movement parameter, Eyring–Powell parameter, local temperature Grashof number and local nanoparticles Grashof number. Key findings of the analysis reveal that fluid axial velocity enhances with larger aspect ratio and thermophoresis parameter but decays for Brownian motion and fluid factors. On the other hand, the channel aspect ratio exhibits inverse relation with peristaltic pressure, fluid temperature and nanoparticles concentration.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21


  1. 1.

    Pordanjani AH, Aghakhani S, Karimipour A, Afrand M, Goodarzi M. Investigation of free convection heat transfer and entropy generation of nanofluid flow inside a cavity affected by magnetic field and thermal radiation. J Therm Anal and Calorim. 2019;137(3):997–1019.

    Article  Google Scholar 

  2. 2.

    Szilágyi IM, Santala E, Heikkilä M, Kemell M, Nikitin T, Khriachtchev L, Räsänen M, Ritala M, Leskelä M. Thermal study on electrospun polyvinylpyrrolidone/ammonium metatungstate nanofibers: optimising the annealing conditions for obtaining WO3 nanofibers. J Therm Anal Calorim. 2011;105:73.

    Article  Google Scholar 

  3. 3.

    Maleki H, Safaei MR, Togun H, Dahari M. Heat transfer and fluid flow of pseudo-plastic nanofluid over a moving permeable plate with viscous dissipation and heat absorption/generation. J Therm Anal Calorim. 2019;135:1643–54.

    CAS  Article  Google Scholar 

  4. 4.

    Nasiri H, Jamalabadi MYA, Sadeghi R, Safaei MR, Nguyen TK, Shadloo MS. A smoothed particle hydrodynamics approach for numerical simulation of nanofluid flows. J Therm Anal Calorim. 2019;135:1733–41.

    CAS  Article  Google Scholar 

  5. 5.

    Hosseini SM, Safaei MR, Goodarzi M, Alrashed AA, Nguyen TK. New temperature, interfacial shell dependent dimensionless model for thermal conductivity of nanofluids. Int J Heat Mass Transf. 2017;114:207–10.

    CAS  Article  Google Scholar 

  6. 6.

    Bahiraei M, Jamshidmofid M, Goodarzi M. Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs. J Mol Liq. 2019;273:88–98.

    CAS  Article  Google Scholar 

  7. 7.

    Khan LA, Raza M, Mir NA, Ellahi R. Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. J Therm Anal Calorim. 2020;140:879–90.

    CAS  Article  Google Scholar 

  8. 8.

    Sajid MU, Ali HM. Recent advances in application of nanofluids in heat transfer devices: a critical review. Renew Sust Energ Rev. 2019;103:556–92.

    CAS  Article  Google Scholar 

  9. 9.

    Wahab A, Hassan A, Qasim MA, Ali HM, Babar H, Sajid MU. Solar energy systems–potential of nanofluids. J Mol Liq. 2019;289:111049.

    CAS  Article  Google Scholar 

  10. 10.

    Sajid MU, Ali HM, Sufyan A, Rashid D, Zahid SU, Rehman WU. Experimental investigation of TiO 2–water nanofluid flow and heat transfer inside wavy mini-channel heat sinks. J Therm Anal Calorim. 2019;137:1279–94.

    CAS  Article  Google Scholar 

  11. 11.

    Maxwell JC. A treatise on electricity and magnetism. Oxfor: Clarendon Press; 1881.

    Google Scholar 

  12. 12.

    Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Lemont: Argonne National Lab; 1995.

    Google Scholar 

  13. 13.

    Babar H, Sajid M, Ali HM. Viscosity of hybrid nanofluids: a critical review. Therm Sci. 2019;23:1713–54.

    Article  Google Scholar 

  14. 14.

    Sajid MU, Ali HM. Thermal conductivity of hybrid nanofluids: a critical review. Int J Heat Mass Transf. 2018;126:211–34.

    CAS  Article  Google Scholar 

  15. 15.

    Amiri MH, Keshavarzi A, Karimipour A, Bahiraei M, Goodarzi M, Esfahani JA. A 3-D numerical simulation of non-Newtonian blood flow through femoral artery bifurcation with a moderate arteriosclerosis: investigating Newtonian/non-Newtonian flow and its effects on elastic vessel walls. Heat Mass Transf. 2019;55:2037–47.

    Article  Google Scholar 

  16. 16.

    Ellahi R, Zeeshan A, Hussain F, Abbas T. Thermally charged MHD bi-phase flow coatings with non-Newtonian nanofluid and Hafnium particles through slippery walls. Coatings. 2019;9:300.

    CAS  Article  Google Scholar 

  17. 17.

    Alamri SZ, Khan AA, Azeez M, Ellahi R. Effects of mass transfer on MHD second grade fluid towards stretching cylinder: a novel perspective of Cattaneo–Christov heat flux model. Phy Lett A. 2019;383:276–81.

    CAS  Article  Google Scholar 

  18. 18.

    Riaz A, Ellahi R, Bhatti MM, Marin M. Study of heat and mass transfer in the Eyring–Powell model of fluid propagating peristaltically through a rectangular complaint channel. Heat Transf Res. 2019;50(16):1539–60.

    Article  Google Scholar 

  19. 19.

    Bhatti MM, Abbas T, Rashidi MM, Ali ME, Yang Z. Entropy generation on MHD Eyring–Powell nanofluid through a permeable stretching surface. Entropy. 2016;18:224.

    Article  Google Scholar 

  20. 20.

    Yoon HK, Ghajar AJ. A note on the Powell–Eyring fluid model. Int Commun Heat Mass. 1987;14:381–90.

    CAS  Article  Google Scholar 

  21. 21.

    Bayliss WM, Starling EH. The movement of innervation of small intestine. J Physiol. 1901;26:125–38.

    CAS  Article  Google Scholar 

  22. 22.

    Noreen S. Magneto-thermo hydrodynamic peristaltic flow of Eyring–Powell nanofluid in asymmetric channel. Nonlinear Eng. 2018;7:83–90.

    Article  Google Scholar 

  23. 23.

    Nisar Z, Hayat T, Alsaedi A, Ahmad B. Wall properties and convective conditions in MHD radiative peristalsis flow of Eyring–Powell nanofluid. J Therm Anal Calorim. 2020.

    Article  Google Scholar 

  24. 24.

    Bhatti MM, Zeeshan A. Heat and mass transfer analysis on peristaltic flow of particle–fluid suspension with slip effects. J Mech Med Biol. 2017;17:1750028.

    Article  Google Scholar 

  25. 25.

    Ijaz N, Riaz A, Zeeshan A, Ellahi R, Sait SM. Buoyancy driven flow with gas-liquid coatings of peristaltic bubbly flow in elastic walls. Coatings. 2020;10(2):115.

    CAS  Article  Google Scholar 

  26. 26.

    Riaz A, Zeeshan A, Bhatti MM, Ellahi R. Peristaltic propulsion of Jeffrey nano-liquid and heat transfer through a symmetrical duct with moving walls in a porous medium. Phys A Stat Mech Appl. 2020;545:123788.

    CAS  Article  Google Scholar 

  27. 27.

    Mekheimer KS, Abdellateef AI. Peristaltic transport through eccentric cylinders: mathematical model. Appl Bionics Biomech. 2013;10:19–27.

    Article  Google Scholar 

  28. 28.

    Reddy S, Mishra M, Sreenadh S, Rao RA. Influence of lateral walls on peristaltic flow in a rectangular duct. J Fluids Eng. 2005;127:824–7.

    Article  Google Scholar 

  29. 29.

    Ijaz N, Riaz A, Zeeshan A, Ellahi R, Sait SM. Buoyancy driven flow with gas-liquid coatings of peristaltic bubbly flow in elastic walls. Coatings. 2020;10:115.

    CAS  Article  Google Scholar 

  30. 30.

    Hussain F, Ellahi R, Zeeshan A, Vafai K. Modelling study on heated couple stress fluid peristaltically conveying gold nanoparticles through coaxial tubes: a remedy for gland tumors and arthritis. J Mol Liq. 2018;268:149–55.

    CAS  Article  Google Scholar 

  31. 31.

    Raza M, Ellahi R, Sait SM, Sarafraz MM, Shadloo MS, Waheed I. Enhancement of heat transfer in peristaltic flow in a permeable channel under induced magnetic field using different CNTs. J Therm Anal Calorim. 2019;140:1277–91.

    Article  Google Scholar 

  32. 32.

    Prakash J, Tripathi D, Tiwari AK, Sait SM, Ellahi R. Peristaltic pumping of nanofluids through a tapered channel in a porous environment: applications in blood flow. Symmetry. 2019;11:868.

    CAS  Article  Google Scholar 

  33. 33.

    Riaz A, Abbas T, Ul Ain Q. Nanoparticles phenomenon for the thermal management of wavy flow of a Carreau fluid through a three dimensional channel. J Therm Anal Calorim. 2020.

    Article  Google Scholar 

  34. 34.

    Powell RE, Eyring H. Mechanisms for the relaxation theory of viscosity. Nature. 1994;154:427–8.

    Article  Google Scholar 

  35. 35.

    Nadeem S, Akram S. Peristaltic flow of a Jeffrey fluid in a rectangular duct. Nonlinear Anal Real World Appl. 2010;11:4238–47.

    CAS  Article  Google Scholar 

  36. 36.

    Mekheimer KS, Husseny SA, Abd El Lateef AI. Effect of lateral walls on peristaltic flow through an asymmetric rectangular duct. Appl Bionics Biomech. 2011;8:295–308.

    Article  Google Scholar 

  37. 37.

    He Ji-Huan. Homotopy perturbation method for solving boundary value problems. Phys Lett A. 2006;350:87–8.

    CAS  Article  Google Scholar 

  38. 38.

    Ji-Huan HE. A note on the homotopy perturbation method. Therm Sci. 2010;14:565–8.

    Google Scholar 

  39. 39.

    Ullah R, Ellahi R, Sait SM, Mohyud-Din ST. On the fractional-order model of HIV-1 infection of CD4 + T-cells under the influence of antiviral drug treatment. J Taibah Univ Sci. 2020;14(1):50–9.

    Article  Google Scholar 

Download references


Authors S. M. Sait and R. Ellahi thank King Fahd University of Petroleum and Minerals, Dhahran, Saudia Arabia, for support.

Author information



Corresponding author

Correspondence to R. Ellahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Riaz, A., Ellahi, R. & Sait, S.M. Role of hybrid nanoparticles in thermal performance of peristaltic flow of Eyring–Powell fluid model. J Therm Anal Calorim 143, 1021–1035 (2021).

Download citation


  • Nanoparticles
  • Eyring–Powell fluid model
  • Peristaltic flow
  • HPM