Thermally developed coupled stress particle–fluid motion with mass transfer and peristalsis

Abstract

The thermally developed particle–fluid motion of a coupled stress fluid through a nonuniform finite wavy channel is studied. A sinusoidal peristaltic wave is traveling in the channel with a constant velocity, long wavelength and low Reynolds number. A coupled stress fluid model is applied to study the flow behavior in the channel. The mathematical model is formulated using dimensionless variables, and exact, analytical solutions are derived. The analytical expressions for the heat transfer, the velocity profile, the stream functions, the concentration profile, and the volumetric flow rate are obtained for the fluid and the particulate phase. Numerical integration is performed to determine the characteristics of the pumping rate. Results are discussed for all the variables examined in terms of the flow parameters.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    Mekheimer KS, Abd Elmaboud Y. Peristaltic transport of a particle–fluid suspension through a uniform and non-uniform annulus. Appl Bionics Biomech. 2008;5(2):47–57.

    Article  Google Scholar 

  2. 2.

    Abdelsalam SI, Vafai K. Particulate suspension effect on peristaltically induced unsteady pulsatile flow in a narrow artery: blood flow model. Math Biosci. 2017;283:91–105.

    Article  Google Scholar 

  3. 3.

    Seikh AH, Akinshilo AT, Taheri MH, Rahimi-Gorji M, Alharthi N, Khan I, Khan AR. Influence of the nanoparticles and uniform magnetic field on the slip blood flows in arterial vessels. Phys Scr. 2019;94(12):125218.

    CAS  Article  Google Scholar 

  4. 4.

    Parthasarathy S, Arunachalam G, Vidhya M. Analysis on the effects of wall properties on MHD peristaltic flow of a dusty fluid through a porous medium. Int J Pure Appl Math. 2015;102(2):247–63.

    Article  Google Scholar 

  5. 5.

    Bhatti MM, Zeeshan A, Ijaz N. Slip effects and endoscopy analysis on blood flow of particle–fluid suspension induced by peristaltic wave. J Mol Liq. 2016;218:240–5.

    CAS  Article  Google Scholar 

  6. 6.

    Eldesoky IM, Abdelsalam SI, Abumandour RM, Kamel MH, Vafai K. Interaction between compressibility and particulate suspension on peristaltically driven flow in planar channel. Appl Math Mech Eng. 2017;38(1):137–54.

    Article  Google Scholar 

  7. 7.

    Sinnott MD, Cleary PW, Harrison SM. Peristaltic transport of a particulate suspension in the small intestine. Appl Math Model. 2017;44:143–59.

    Article  Google Scholar 

  8. 8.

    Ramprasad S, Bhatta SS, Mallikarjuna B, Srinivasacharya D. Two-phase particulate suspension flow in convergent and divergent channels: a numerical model. Int J Appl Comput Math. 2017;3(1):843–58.

    Article  Google Scholar 

  9. 9.

    Pandey SK, Singh A. Unsteady peristaltic transport of a particle–fluid suspension: application to oesophageal swallowing. Z Naturforsch A. 2018;73(12):1143–56.

    CAS  Article  Google Scholar 

  10. 10.

    Akram S, Mekheimer KS, Elmaboud YA. Particulate suspension slip flow induced by peristaltic waves in a rectangular duct: effect of lateral walls. Alex Eng J. 2018;57(1):407–14.

    Article  Google Scholar 

  11. 11.

    Eldesoky IM, Abdelsalam SI, El-Askary WA, El-Refaey AM, Ahmed MM. Joint effect of magnetic field and heat transfer on particulate fluid suspension in a catheterized wavy tube. Bionanoscience. 2019;9(3):723–39.

    Article  Google Scholar 

  12. 12.

    Abumandour RM, Eldesoky IM, Kroush FA. Effects of slip conditions and compressibility on the peristaltic flow of particulate suspension in a planar channel. SN Appl Sci. 2019;1:1305. https://doi.org/10.1007/s42452-019-1309-3.

    CAS  Article  Google Scholar 

  13. 13.

    Ijaz N, Riaz A, Zeeshan A, Ellahi R, Sait SM. Buoyancy driven flow with gas–liquid coatings of peristaltic bubbly flow in elastic walls. Coatings. 2020;10(2):115.

    CAS  Article  Google Scholar 

  14. 14.

    Michaelides E, Crowe CT, Schwarzkopf JD. Multiphase flow handbook. Boca Raton: CRC Press; 2016.

    Google Scholar 

  15. 15.

    Hayat T, Rafiq M, Alsaedi A, Ahmad B. Radiative and Joule heating effects on peristaltic transport of dusty fluid in a channel with wall properties. Eur Phys J Plus. 2014;129(10):225.

    Article  Google Scholar 

  16. 16.

    Bhatti MM, Zeeshan A. Analytic study of heat transfer with variable viscosity on solid particle motion in dusty Jeffery fluid. Mod Phys Lett B. 2016;30(16):1650196.

    CAS  Article  Google Scholar 

  17. 17.

    Tariq H, Khan AA, Zaman A. Peristaltically wavy motion on dusty Walter’s B fluid with inclined magnetic field and heat transfer. Arab J Sci Eng. 2019;44(9):7799–808.

    Article  Google Scholar 

  18. 18.

    Eldesoky IM, Abdelsalam SI, El-Askary WA, Ahmed MM. Concurrent development of thermal energy with magnetic field on a particle–fluid suspension through a porous conduit. Bionanoscience. 2019;9(1):186–202.

    Article  Google Scholar 

  19. 19.

    Souayeh B, Kumar KG, Reddy MG, Rani S, Hdhiri N, Alfannakh H, Rahimi-Gorji M. Slip flow and radiative heat transfer behavior of Titanium alloy and ferromagnetic nanoparticles along with suspension of dusty fluid. J Mol Liq. 2019;290:111223.

    CAS  Article  Google Scholar 

  20. 20.

    Ellahi R, Hussain F, Ishtiaq F, Hussain A. Peristaltic transport of Jeffrey fluid in a rectangular duct through a porous medium under the effect of partial slip: an approach to upgrade industrial sieves/filters. Pramana. 2019;93:34.

    Article  Google Scholar 

  21. 21.

    Prakash J, Siva EP, Tripathi D, Bég OA. Thermal slip and radiative heat transfer effects on electro-osmotic magnetonanoliquid peristaltic propulsion through a microchannel. Heat Transf Asian Res. 2019;48(7):2882–908.

    Article  Google Scholar 

  22. 22.

    Noreen S, Tripathi D. Heat transfer analysis on electroosmotic flow via peristaltic pumping in non-Darcy porous medium. Therm Sci Eng. 2019;11:254–62.

    Article  Google Scholar 

  23. 23.

    Ellahi R, Zeeshan A, Hussain F, Asadollahi A. Peristaltic blood flow of couple stress fluid suspended with nanoparticles under the influence of chemical reaction and activation energy. Symmetry. 2019;11(2):276.

    CAS  Article  Google Scholar 

  24. 24.

    Bilal M, Ramzan M. Hall current effect on unsteady rotational flow of carbon nanotubes with dust particles and nonlinear thermal radiation in Darcy–Forchheimer porous media. J Therm Anal Calorim. 2019;138(5):3127–37.

    CAS  Article  Google Scholar 

  25. 25.

    Hussain F, Ellahi R, Zeeshan A, Vafai K. Modelling study on heated couple stress fluid peristaltically conveying gold nanoparticles through coaxial tubes: a remedy for gland tumors and arthritis. J Mol Liq. 2018;268:149–55.

    CAS  Article  Google Scholar 

  26. 26.

    Reddy MG, Ferdows M. Species and thermal radiation on micropolar hydromagnetic dusty fluid flow across a paraboloid revolution. J Therm Anal Calorim. 2020;1:1. https://doi.org/10.1007/s10973-020-09254-1.

    CAS  Article  Google Scholar 

  27. 27.

    Khan LA, Raza M, Mir NA, Ellahi R. Effects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channel. J Therm Anal Calorim. 2020;140:879–90.

    CAS  Article  Google Scholar 

  28. 28.

    Tripathi D, Yadav A, Bég OA. Electro-osmotic flow of couple stress fluids in a micro-channel propagated by peristalsis. Eur Phys J Plus. 2017;132(4):173.

    Article  Google Scholar 

  29. 29.

    Karami F, Nadooshan AA, Westerberg LG, Beni YT. Nanofluid flow in a catheterized tapered artery. J Therm Anal Calorim. 2019;137(1):327–42.

    CAS  Article  Google Scholar 

  30. 30.

    Mekheimer KS, El Shehawey EF, Elaw AM. Peristaltic motion of a particle–fluid suspension in a planar channel. Int J Theor Phys. 1998;37(11):2895–920.

    Article  Google Scholar 

  31. 31.

    Charm SE, Kurland GS. Blood flow and microcirculation. Hoboken: Wiley; 1974.

    Google Scholar 

  32. 32.

    Michaelides EE. Nanofluidics. Cham: Springer International Publishing; 2014.

    Google Scholar 

  33. 33.

    Akbar NS, Nadeem S, Khan ZH. Thermal and velocity slip effects on the MHD peristaltic flow with carbon nanotubes in an asymmetric channel: application of radiation therapy. Appl Nanosci. 2014;4(7):849–57.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. M. Bhatti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Bhatti, M.M. & Michaelides, E.E. Thermally developed coupled stress particle–fluid motion with mass transfer and peristalsis. J Therm Anal Calorim (2020). https://doi.org/10.1007/s10973-020-09871-w

Download citation

Keywords

  • Heat transfer
  • Particle–fluid
  • Mass transfer
  • Coupled stress fluid
  • Peristaltic flow
  • Friction forces