Phase transformations in commercial cold-rolled Al–Zn–Mg–Cu alloys with Sc and Zr addition

Abstract

The influence of cold rolling on thermal and mechanical properties together with microstructure observation of cast AlZnMgCu(ScZr) alloys has been investigated. Differential scanning calorimetry measurements and microhardness were compared to microstructure that was observed by microscopy (scanning electron and transmission), electron backscatter and X-ray diffractions. Microstructure observation of all studied alloys proved eutectic phase at (sub)grain boundaries. The eutectic phase at grain boundary in the AlZnMgCuScZr has a disordered quasicrystalline structure (known as the T phase or Mg32(Al,Cu,Zn)49). In the AlZnMgCu alloy, the eutectic phase consists of two phases—predominant MgZn2 phase and minor quasicrystalline T phase. During casting and subsequent cooling, multilayer primary Al3(Sc,Zr) particles also precipitated in the alloy with Sc,Zr addition. Solute clusters and/or Guinier–Preston zones were dissolved during the annealing up to ~ 170 °C in the alloys. The highest hardening is caused by particle formation of metastable η′ and stable η phase in AlZnMgCu system observed at ~ 200 °C. Precipitation of the secondary Al3(Sc,Zr) particles is probably the reason of hardening after annealing above 300 °C in the Sc,Zr-containing alloys. Melting of eutectic phases was observed in DSC curves at temperatures ~ 481 and ~ 493 °C in the studied alloys. Activation energies of the Guinier–Preston zones dissolution and/or solute clusters were calculated using Kissinger and Starink method as QA ≈ 100 kJ mol−1 and the formation of the particles of Al–Zn–Mg–Cu system as QB ≈ 150 kJ mol−1. No significant effect on the calculation of activation energy values of thermal processes was observed in deformed alloys. Sc,Zr addition in the alloys stabilizes grains, and there is no recrystallization in the AlZnMgCuScZr alloy at temperature 450 °C/10 h.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    Toropova LS, Eskin DG, Kharakterova ML, Dobatkina TV. Advanced aluminium alloys containing scandium—structure and properties. Amsterdam: Gordon and Breach Science Publisher; 1998. ISBN 90-5699-089-6.

  2. 2.

    Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys. Mater Des. 2014. https://doi.org/10.1016/j.matdes.2013.12.002.

    Article  Google Scholar 

  3. 3.

    Vakhromov RO, Antipov VV, Tkachenko EA. Research and development of high-strength of AlZnMgCu alloys. In: ICAA13 13th international conference on aluminium alloys. 2012. https://doi.org/10.1002/9781118495292.ch228.

  4. 4.

    Rometsch PA, Zhang Y, Khight S. Heat treatment of 7xxx series aluminium alloys—Some recent developments. Trans Nonferrous Met Soc China. 2014. https://doi.org/10.1016/S1003-6326(14)63306-9.

    Article  Google Scholar 

  5. 5.

    Zhang M, Liu T, He CH, Ding J, Liu E, Shi CH, Li J, Zhao N. Evolution of microstructure and properties of Al–Zn–Mg–Cu–Sc–Zr alloy during aging treatment. J Alloy Compd. 2016. https://doi.org/10.1016/j.jallcom.2015.10.296.

    Article  Google Scholar 

  6. 6.

    Yang XB, Chen JH, Liu JZ, Qin F, Xie J, Wu CL. A high-strength AlZnMg alloy hardened by the T-phase precipitates. J Alloy Compd. 2014. https://doi.org/10.1016/j.jallcom.2014.04.185.

    Article  Google Scholar 

  7. 7.

    Feng CH, Shou W, Liu H, Yi D, Feng Y. Microstructure and mechanical properties of high strength Al–Zn–Mg–Cu alloys used for oil drill pipes. Trans Nonferrous Met Soc China. 2015. https://doi.org/10.1016/S1003-6326(15)63994-2.

    Article  Google Scholar 

  8. 8.

    Gang S, Cerezo A. Early-stage precipitation in Al–Zn–Mg–Cu alloy (7050). Acta Mater. 2004. https://doi.org/10.1016/j.actamat.2004.06.025.

    Article  Google Scholar 

  9. 9.

    Yang W, Ji S, Wang M, Li Z. Precipitation behaviour of Al–Zn–Mg–Cu alloy and diffraction analysis from η′ precipitates in four variants. J Alloy Compd. 2014. https://doi.org/10.1016/j.jallcom.2014.05.061.

    Article  Google Scholar 

  10. 10.

    Venkateswarlu K, Pathak LC, Raya AK, Dasa G, Verma PK, Kumar M, Ghosh RN. Microstructure, tensile strength and wear behaviour of Al–Sc alloy. Mater Sci Eng A. 2004. https://doi.org/10.1016/j.msea.2004.05.075.

    Article  Google Scholar 

  11. 11.

    Zhou S, Zhang Z, Li M, Pan D, Su H, Du X, Li P, Wu Y. Effect of Sc on microstructure and mechanical properties of as-cast Al–Mg alloys. Mater Des. 2016. https://doi.org/10.1016/j.matdes.2015.10.132.

    Article  Google Scholar 

  12. 12.

    Mostafopoor S, Malekan M, Emamy M. Effects of Zr addition on solidification characteristics of Al–Zn–Mg–Cu alloy using thermal analysis. J Thermal Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7426-1.

    Article  Google Scholar 

  13. 13.

    Vlach M, Čížek J, Smola B, Melikhova O, Vlček M, Kodetová V, Kudrnová H, Hruška P. Heat treatment and age hardening of Al–Si–Mg–Mn commercial alloy with addition of Sc and Zr. Mater Charact. 2017. https://doi.org/10.1016/j.matchar.2017.04.017.

    Article  Google Scholar 

  14. 14.

    Vlach M, Stulíková I, Smola B, Císařová H, Piešová J, Daniš S, Gemma R, Málek J, Tanprayoon D, Neubert V. Phase transformations in non-isothermally annealed as-cast and cold-rolled AlMnScZr alloys. Int J Mater Res. 2012. https://doi.org/10.3139/146.110712.

    Article  Google Scholar 

  15. 15.

    Shi Y, Pan Q, Li M, Huang X, Li B. Effect of Sc and Zr additions on corrosion behaviour of Al–Zn–Mg–Cu alloys. J Alloy Compd. 2014. https://doi.org/10.1016/j.jmst.2016.12.003.

    Article  Google Scholar 

  16. 16.

    Yin ZM, Pan QL, Zhang YH, Jiang F. Effect of minor Sc and Zr on the microstructure and mechanical properties of Al–Mg based alloys. Mater Sci Eng, A. 2000. https://doi.org/10.1016/S0921-5093(99)00682-6.

    Article  Google Scholar 

  17. 17.

    Zhang WG, Ye YC, He LJ, Li PJ, Feng X, Novikov LS. Dynamic response and microstructure control of Al–Sc binary alloy under high-speed impact. Mater Sci Eng, A. 2013. https://doi.org/10.1016/j.msea.2013.04.067.

    Article  Google Scholar 

  18. 18.

    Costa S, Puga H, Barbosa J, Pinto AMP. The effect of Sc additions on the microstructure and age hardening behaviour of as cast Al–Sc alloys. Mater Des. 2012. https://doi.org/10.1016/j.matdes.2012.06.019.

    Article  Google Scholar 

  19. 19.

    Davydov VG, Rostova TD, Zakharov VV, Filatov YA, Yelagin VI. Scientific principles of making an alloying addition of scandium to aluminium alloys. Mater Sci Eng, A. 2000. https://doi.org/10.1016/S0921-5093(99)00652-8.

    Article  Google Scholar 

  20. 20.

    Kaiser MS, Datta S, Roychowdhury A, Banerjee MK. Effect of scandium on the microstructure and ageing behaviour of cast Al–6Mg alloy. Mater Charact. 2008. https://doi.org/10.1016/j.matchar.2008.03.006.

    Article  Google Scholar 

  21. 21.

    Norman AF, Prangnell PB, McEwen RS. The solidification behaviour of dilute aluminium–scandium alloys. Acta Mater. 1988. https://doi.org/10.1016/S1359-6454(98)00257-2.

    Article  Google Scholar 

  22. 22.

    Hyde KB, Norman AF, Prangnell PB. The effect of cooling rate on the morphology of primary Al3Sc intermetallic particles in Al–Sc alloys. Acta Mater. 2001. https://doi.org/10.1016/S1359-6454(01)00050-7.

    Article  Google Scholar 

  23. 23.

    Zhou S, Zhang Z, Li M, Pan D, Su H, Du X, Li P, Wu Y. Correlative characterization of primary particles formed in as-cast Al–Mg–Alloy containing a high level of Sc. Mater Charact. 2016. https://doi.org/10.1016/j.matchar.2016.05.011.

    Article  Google Scholar 

  24. 24.

    Vlach M, Čížek J, Smola B, Stulíková I, Hruška P, Kodetová V, Daniš S, Tanprayoon D, Neubert V. Influence of dislocations on precipitation processes in hot-extruded Al–Mn–Sc–Zr alloy. Int J Mater Res. 2018. https://doi.org/10.3139/146.111654.

    Article  Google Scholar 

  25. 25.

    Vlach M, Stulíková I, Smola B, Kekule T, Kudrnová H, Kodetová V, Očenášek V, Málek J, Neubert V. Annealing effects in hot-deformed Al–Mn–Sc–Zr alloys. Kov Mat. 2015. https://doi.org/10.4149/km_2015_5_295.

    Article  Google Scholar 

  26. 26.

    Montagné P, Tillard M. On the adaptability of 1/1 cubic approximant structure in the Mg–Al–Zn system with the particular example of Mg32Al12Zn37. J Alloy Compd. 2016. https://doi.org/10.1016/j.jallcom.2015.09.201.

    Article  Google Scholar 

  27. 27.

    Wang F, Eskin D, Connoley T, Mi J. Influence of ultrasonic treatment on formation of primary Al3Zr in Al – 0.4Zr alloy. Trans Nonferrous Met Soc China. 2017. https://doi.org/10.1016/s1003-6326(17)60115-8.

    Article  Google Scholar 

  28. 28.

    Li JH, Wiessner M, Albu M, Wurster S, Sartory B, Hofer F, Schumacher P. Correlative characterization of primary Al3(Sc, Zr) phase in an Al–Zn–Mg based alloy. Mater Charact. 2015. https://doi.org/10.1016/j.matchar.2015.01.018.

    Article  Google Scholar 

  29. 29.

    Olafsson P, Sandstrom R, Karlsson AJ. Comparison of experimental, calculated and observed values for electrical and thermal conductivity of aluminium alloys. J Mater Sci. 1997. https://doi.org/10.1023/A:1018680024876.

    Article  Google Scholar 

  30. 30.

    Ghosh KS, Gao N, Starink MJ. Characterization of high-pressure torsion processed 7150 Al–Zn–Mg–Cu alloy. Mater Sci Eng, A. 2012. https://doi.org/10.1016/j.msea.2012.05.026.

    Article  Google Scholar 

  31. 31.

    Ghosh KS, Gao N. Determination of kinetic parameters from calorimetric study of solid-state reactions in 7150 Al–Zn–Mg alloy. Trans Nonferrous Met Soc China. 2011. https://doi.org/10.1016/S1003-6326(11)60843-1.

    Article  Google Scholar 

  32. 32.

    Antonione C, Marino F, Riontino G, Abis S, Russo E. An evaluation of AA 7012 microstructure by differential scanning calorimetry. Mater Chem Phys. 1988. https://doi.org/10.1016/0254-0584(88)90055-7.

    Article  Google Scholar 

  33. 33.

    Abis S, Riontino G. A resistivity study of 7012 Al-Mg-Zn alloy commercial tempers. Mater Lett. 1987;5(11–12):442. https://doi.org/10.1016/0167-577X(87)90060-7

    CAS  Article  Google Scholar 

  34. 34.

    Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003. https://doi.org/10.1016/S0040-6031(03)00144-8.

    Article  Google Scholar 

  35. 35.

    Vlach M, Čížek J, Kodetová V, Kekule T, Lukáč F, Cieslar M, Kudrnová H, Bajtošová L, Leibner M, Harcuba P, Málek J, Neubert V. Annealing effects in cast commercial aluminium Al–Zn–Mg–Cu(–Sc–Zr) allolys. Met Mater Int. 2019. https://doi.org/10.1007/s12540-019-00499-6.

    Article  Google Scholar 

  36. 36.

    Chemingui M, Ameur R, Optasanu V, Khitouni M. DSC analysis of phase transformations during precipitation hardening in Al–Zn–Mg alloy (7072). J Thermal Anal Calorim. 2019. https://doi.org/10.1007/s10973-018-7856-9.

    Article  Google Scholar 

  37. 37.

    Werenskiold JC, Deschamps A, Bréchet Y. Characterization and modeling of precipitation kinetics in an Al–Zn–Mg alloy. Mat Sci Eng A. 2000. https://doi.org/10.1016/S0921-5093(00)01247-8.

    Article  Google Scholar 

  38. 38.

    Emani S, Benedyk J, Nash P, Chen D. Double aging and thermomechanical heat treatment of AA7075 aluminium alloy extrusions. Mater Sci. 2009. https://doi.org/10.1007/s10853-009-3879-8.

    Article  Google Scholar 

  39. 39.

    Vlach M, Kodetová V, Smola B, Čížek J, Kekule T, Cieslar M, Kudrnová H, Bajtošová L, Leibner M, Procházka I. Characterization of phase development in commercial Al–Zn–Mg(–Mn, Fe) alloy with and without Sc Zr-addition. Kov Mat. 2018. https://doi.org/10.4149/km_2018_6_367.

    Article  Google Scholar 

  40. 40.

    Jerina L, Medved J, Godec M, Vončina M. Influence of tge specific surface area of secondary material on the solidification process and microstructure of aluminium alloy AA7075. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7425-2.

    Article  Google Scholar 

  41. 41.

    Starink MJ. Comments on “Precipitation kinetics of Al–1.12Mg2Si–0.35Si and Al–1.07Mg2Si–0.33Cu alloys”. J Alloy Compd. 2007. https://doi.org/10.1016/j.jallcom.2006.06.069.

    Article  Google Scholar 

  42. 42.

    Kodetová V, Vlach M, Smola B, Kekule T, Daniš S, Kudrnová H, Málek J. Effect of cold rolling on precipitation processes in Al–Zn–Mg(–Sc–Zr) alloy. Acta Phys Pol A. 2018. https://doi.org/10.12693/aphyspola.134.631.

    Article  Google Scholar 

  43. 43.

    Liang Z. Clustering and precipitation in Al–Mg–Si alloys. Dissertation. Institut für Angewandte Materialforschung. November 2012. ISSN: 1868–5781. https://doi.org/10.5442/d0032.

  44. 44.

    Lang P, Wojcik T, Povoden-Karadeniz E, Falaha A, Kozeschnik E. Thermo-kinetic prediction of metastable and stable phase precipitation in Al–Zn–Mg series aluminium alloys during non-isothermal DSC analysis. J Alloy Compd. 2014. https://doi.org/10.1016/j.jallcom.2014.04.119.

    Article  Google Scholar 

  45. 45.

    Tang J, Chen H, Zhang X, Liu X, Liu W, Ouyang H, Li H. Influence of quench-induced precipitation on aging behaviour of Al–Zn–Mg–Cu alloy. Trans Nonfer Met Soc China. 2012. https://doi.org/10.1016/S1003-6326(11)61313-7.

    Article  Google Scholar 

  46. 46.

    Chemingui M, Ameur R, Optasanu V, Khitouni M. DSC analysis of phase transformations during precipitation hardening in Al–Zn–Mg alloy (7020). J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7856-9.

    Article  Google Scholar 

  47. 47.

    Afify N, Gaber A, Abbady G. Fine scale precipitates in Al–Mg–Zn alloys after various aging temperatures. Mater Sci Appl. 2011. https://doi.org/10.4236/msa.2011.25056.

    Article  Google Scholar 

  48. 48.

    Kodetová V, Vlach M, Smola B, Málek J, Kekule T, Kudrnová H. Response of as-cast Al–Zn–Mg alloy with and without Sc, Zr-addition to annealing with constant heating rate. IN: Proceedings Paper—26th international conference on metallurgy and materials, Tanger. 2017. ISBN: 978-80-87294-79-6. WOS: 000434346900285.

Download references

Acknowledgements

This work was supported by The Czech Science Foundation (GACR, Project No. 17-17139S). VK acknowledges support by the project SVV-2017-260449 (Specific Academic Research Projects). PH acknowledges financial support by ERDF under the project CZ.02.1.01/0.0/0.0/15_003/0000485. The authors are also grateful to Ivana Stulíková and Tamara Čučková for their help.

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Kodetová.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kodetová, V., Vlach, M., Kudrnová, H. et al. Phase transformations in commercial cold-rolled Al–Zn–Mg–Cu alloys with Sc and Zr addition. J Therm Anal Calorim (2020). https://doi.org/10.1007/s10973-020-09862-x

Download citation

Keywords

  • Al-based alloys
  • Al3(ScZr) particles
  • DSC
  • Activation energy
  • Recrystallization