Investigation into maximum temperature of synthesis reaction for single kinetically controlled liquid–liquid semibatch reactions with arbitrary reaction order

Abstract

Maximum temperature of synthesis reaction (MTSR) is an essential concept to assess the thermal runaway risk and design safe operating conditions for semibatch reactors (SBRs). According to the definition, the values of MTSR will change with the reaction temperature (T). So far, the behavior of MTSR for liquid–liquid semibatch reactions with arbitrary reaction order has not been thoroughly researched. In this work, it is theoretically and experimentally verified that MTSR versus T profiles are prone to present an ‘S’ shape for strongly exothermic kinetically controlled liquid–liquid reactions. That means that the dependence of MTSR on T is complex. A theoretical criterion to determine whether MTSR will increase with T increasing is developed in this work. This criterion states that if the criterion is negative, MTSR will increase as T increases. To validate this criterion, the nitration of 4-chloro benzotrifluorid by mixed acid was conducted. The theoretical criterion can contribute to design safe operating conditions for SBRs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6

Abbreviations

A :

Pre-exponential factor (s−1)

C :

Molar concentration (mol m−3)

C p :

Heat capacity (J kg−1 K−1)

d a :

Stirrer diameter (m)

D :

Diffusion coefficient (cm2 s−1)

Da:

Damköhler number

E :

Activation energy (kJ kmol−1)

RE:

Enhancement factor

f :

Function of the dimensionless time and conversion of B

H :

Equilibrium distribution coefficient

Ha:

Hatter number

ΔH :

Heat production per mole (kJ mol)

k n,m :

Reaction rate constant (mol−n−m+1 s−1)

kL2 :

Mass transfer coefficient (L mol−1s−1)

MTSR:

The maximum temperature of synthesis reaction under adiabatic condition (°C)

MTSR0 :

Dimensionless form of MTSR

M :

Molecular mass (gmol−1)

N :

Mole number (mol)

n a :

Stirrer speed (s−1)

P :

Power dissipated by the stirrer (W)

q :

Heat release rate (W)

Q :

Heat release rate (kJ)

r :

Reaction rate (mol m−3 s−1)

R :

Ideal gas constant, equal to 8.314 kJ kmol−1 K−1

Re:

Reynolds number

t :

Time or characteristic time (s)

T :

Temperature (K)

T R :

Reference temperature, equal to 300 K

ΔTad :

Adiabatic temperature rise (K)

V :

Liquid volume (m3)

X :

The fractional conversion

x :

Sulfuric acid strength or molar fraction

A, B, C, D:

Components A, B, C and D

ac:

Accumulation

b:

Boiling

c:

Continuous phase

cor:

Correction value

d:

Dispersed phase

D:

Dosing

eff:

Efficient

f:

Final

L:

Liquid

max:

Maximum

m:

Kinetics order toward component B

n:

Kinetics order toward component A

p:

Process

r:

Reaction

R:

Reference

stoi:

Stoichiometric point

t:

Time

tot:

Total

w:

Water

0:

Start of the dosing period

1:

Before addition

2:

After addition

γ:

Dimensionless activation energy, equal to E/(RTR)

τ :

Dimensionless temperature, equal to T/TR

Δτad,0 :

Dimensionless adiabatic temperature rise

ε :

Relative volume increase at the end of the semi-batch period

θ :

Dimensionless time, equal to t/tD,

ν :

Stoichiometric coefficient

κ :

Dimensionless reaction rate constant, equal to exp[γ(1–1/τ)]

ρ :

Molar density (kmol m−3)

μ :

Viscosity (kg m−1s−1)

References

  1. 1.

    Steinbach J. Safety assessment for chemical processes. Germany: Wiley; 1999. p. 11–21.

    Google Scholar 

  2. 2.

    Hugo P, Steinbach J. Praxisorientierte darstellung der thermischen sicherheitsgrenzen für den indirekt gekühlten semibatch-reaktor. Chem Ing Tech. 1985;57:780–2.

    CAS  Google Scholar 

  3. 3.

    Hugo P, Steinbach J. A comparison of the limits of safe operation of a SBR and a CSTR. Chem Eng Sci. 1986;41(4):1081–7.

    CAS  Google Scholar 

  4. 4.

    Gygax R. Chemical reaction engineering for safety. Chem Eng Sci. 1989;43:1759–71.

    Google Scholar 

  5. 5.

    Stoessel F. Thermal safety of chemical processes: risk assessment and process design. Germany: Wiley; 2008. p. 59–80.

    Google Scholar 

  6. 6.

    Maestri F, Rota R. Safe and productive operation of homogeneous semibatch reactors involving autocatalytic reactions with arbitrary reaction order. Ind Eng Chem Res. 2007;46(16):5333–9.

    CAS  Google Scholar 

  7. 7.

    Hugo P, Steinbach J, Stoessel F. Calculation of the maximum temperature in stirred tank reactors in case of a breakdown of cooling. Chem Eng Sci. 1988;43(8):2147–52.

    CAS  Google Scholar 

  8. 8.

    Zhang L, Yu WD, Pan XH. Thermal hazard assessment for synthesis of 3-methylpyridine-N-oxide. J Loss Prevent Proc. 2015;35:316–20.

    CAS  Google Scholar 

  9. 9.

    Zhang WQ, Xu EY, Li CQ. Thermal hazard study for the synthesis process of butyl acetate. App Chem Ind. 2018;47:227–30.

    Google Scholar 

  10. 10.

    Guo ZC, Hao L, Bai WS, Wang R, Wei HY. Investigation into maximum temperature of synthesis reaction and accumulation in isothermal semibatch processes. Ind Eng Chem Res. 2015;54(19):5285–93.

    CAS  Google Scholar 

  11. 11.

    D’Angelo FA, Brunet L, Cognet P. Modelling and constraint optimisation of an aromatic nitration in liquid–liquid medium. Chem Eng Sci. 2003;91(1):75–84.

    Google Scholar 

  12. 12.

    Rakotondramaro H, WärnÅ J, Estel L. Cooling and stirring failure for semi-batch reactor: application to exothermic reactions in multiphase reactor. J Loss Prevent Proc. 2016;43:147–57.

    CAS  Google Scholar 

  13. 13.

    Copelli S, Derudi M, Cattaneo CS. Synthesis of 4-Chloro-3-nitrobenzotrifluoride: industrial thermal runaway simulation due to cooling system failure. Process Saf Environ. 2014;92(6):659–68.

    CAS  Google Scholar 

  14. 14.

    Moreno VC, Russo V, Tesser R. Thermal risk in semi-batch reactors: the epoxidation of soybean oil. Process Saf Environ. 2017;109:529–36.

    Google Scholar 

  15. 15.

    Leveneur S, Pinchard M, Rimbault A. Parameters affecting thermal risk through a kinetic model under adiabatic condition Application to liquid-liquid reaction system. Thermochim Acta. 2018;666:10–7.

    CAS  Google Scholar 

  16. 16.

    Zaldívar JM, Alós MA, Molga E, Hernández H, Westerterp KR. The effect of phase inversion during semibatch aromatic nitrations. Chem Eng Process. 1995;35(6):529–42.

    Google Scholar 

  17. 17.

    Maestri F, Rota R. Thermally safe operation of liquid–liquid semibatch reactors Part II: single diffusion controlled reactions with arbitrary reaction order. Chem Eng Sci. 2005;60(20):5590–602.

    CAS  Google Scholar 

  18. 18.

    Steensma M, Westerterp KR. Thermally safe operation of a semibatch reactor for liquid–liquid reactions–fast reactions. Chem Eng Technol. 1991;14(6):367–75.

    CAS  Google Scholar 

  19. 19.

    Maestri F, Copelli S, Rota R. Simple procedure for optimal scale-up of fine chemical processes. II: Nitration of 4-chlorobenzotrifluoride. Ind Eng Chem Res. 2009;48(3):1316–24.

    CAS  Google Scholar 

  20. 20.

    Maestri F, Rota R. Kinetic-free safe optimization of a semibatch runaway reaction: the nitration of 4-chloro benzotrifluoride. Ind Eng Chem Res. 2016;55(50):12786–94.

    CAS  Google Scholar 

  21. 21.

    Zaldívar JM, Molga E, Alós MA, Hernández H, Westerterp KR. Aromatic nitrations by mixed acid: slow liquid–liquid reaction regime. Chem Eng Process. 1995;35(6):543–59.

    Google Scholar 

  22. 22.

    Calderbank PH, Moo-Young MB. The continuous phase heat and mass-transfer properties of dispersions. Chem Eng Sci. 1961;16(1):39–54.

    CAS  Google Scholar 

  23. 23.

    Wilke CR, Chang P. Correlation of diffusion coefficients in dilute solutions. AIChE J. 1995;1(2):264–70.

    Google Scholar 

  24. 24.

    Cox PR, Strachan AN. Two phase nitration of toluene- I. Chem Eng Sci. 1972;27(3):457–63.

    CAS  Google Scholar 

Download references

Acknowledgements

This work has been financially supported by National Key R&D Program of China (2017YFC0804701-4) and the Fundamental Research Funds for the Central Universities (30917011312).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zichao Guo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 185 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Feng, W., Guo, Z. et al. Investigation into maximum temperature of synthesis reaction for single kinetically controlled liquid–liquid semibatch reactions with arbitrary reaction order. J Therm Anal Calorim (2020). https://doi.org/10.1007/s10973-020-09640-9

Download citation

Keywords

  • MTSR
  • Kinetic regime
  • Heterogeneous
  • Semibatch
  • Isothermal