Numerical investigation on cooling performance of PCM/cooling plate hybrid system for power battery with variable discharging conditions

Abstract

To solve the cooling problems of power battery with variable discharging conditions, a hybrid thermal management system combined with phase change materials (PCM) and cooling plate is designed. Moreover, the ANSYS FLUENT is adopted to simulate the three-dimensional model. As a result, the effects of water flow direction and variable discharging conditions are discussed on the maximum temperature and maximum temperature difference inside the battery as well as the liquid fraction of PCM. The numerical results indicate that the maximum temperature is governed by the physical parameters of PCM, whereas the water flow direction in the cooling plate plays a dominant role on the maximum temperature difference. Moreover, the flow direction scheme of case 5 is benefit to reduce the maximum temperature and temperature difference simultaneously. Although the cooling performance of hybrid thermal management system can be deteriorated by increasing the pulse duration and heat flux, the melting of PCM dramatically suppresses the increase in maximum temperature and temperature difference. Considering the limited quality of PCM, enhancing the thermal conductivity of PCM and employing cooling scheme with staggered flow direction are recommendable ways to extend the applicability of the hybrid thermal management system for power battery with complex discharging conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Antonakakis N, Chatziantoniou I, Filis G. Energy consumption, CO2 emissions, and economic growth: an ethical dilemma. Renew Sustain Energy Rev. 2017;68:808–24.

    Article  Google Scholar 

  2. 2.

    Yang Z, Ji P, Li Q, Jiang Y, Zheng C, Wang Y, Gao X, Lin R. Comprehensive understanding of SO3 effects on synergies among air pollution control devices in ultra-low emission power plants burning high-sulfur coal. J Clean Prod. 2019;239:118096.

    CAS  Article  Google Scholar 

  3. 3.

    Li Z, Khajepour A, Song J. A comprehensive review of the key technologies for pure electric vehicles. Energy. 2019;182:824–39.

    Article  Google Scholar 

  4. 4.

    Al-Zareer M, Dincer I, Rosen MA. A review of novel thermal management systems for batteries. Int J Energy Res. 2018;42:3182–205.

    Article  Google Scholar 

  5. 5.

    Huo Y, Rao Z. Investigation of phase change material based battery thermal management at cold temperature using lattice Boltzmann method. Energy Convers Manag. 2017;133:204–15.

    CAS  Article  Google Scholar 

  6. 6.

    Waldmann T, Wilka M, Kasper M, Fleischhammer M, Wohlfahrt-Mehrens M. Temperature dependent ageing mechanisms in lithium-ion batteries—a post-mortem study. J Power Sources. 2014;262:129–35.

    CAS  Article  Google Scholar 

  7. 7.

    Zhu J, Wierzbicki T, Li W. A review of safety-focused mechanical modeling of commercial lithium-ion batteries. J Power Sources. 2018;378:153–68.

    CAS  Article  Google Scholar 

  8. 8.

    Kim J, Oh J, Lee H. Review on battery thermal management system for electric vehicles. Appl Therm Eng. 2019;149:192–212.

    Article  Google Scholar 

  9. 9.

    Yang S, Ling C, Fan Y, Yang Y, Tan X, Dong H. A review of lithium-ion battery thermal management system strategies and the evaluate criteria. Int J Electrochem Sci. 2019;14:6077–107.

    CAS  Article  Google Scholar 

  10. 10.

    Wu W, Wang S, Wu W, Chen K, Hong S, Lai Y. A critical review of battery thermal performance and liquid based battery thermal management. Energy Convers Manag. 2019;182:262–81.

    Article  Google Scholar 

  11. 11.

    Xu Q, Liu L, Feng J, Qiao L, Yu C, Shi W, Ding C, Zang Y, Chang C, Xiong Y. A comparative investigation on the effect of different nanofluids on the thermal performance of two-phase closed thermosyphon. Int J Heat Mass Transf. 2020;149:119189.

    CAS  Article  Google Scholar 

  12. 12.

    Gong L, Xu YP, Ding B, Zhang ZH, Huang ZQ. Thermal management and structural parameters optimization of MCM-BGA 3D package model. Int J Therm Sci. 2020;147:106120.

    Article  Google Scholar 

  13. 13.

    Tong W, Somasundaram K, Birgersson E, Mujumdar AS, Yap C. Thermo-electrochemical model for forced convection air cooling of a lithium-ion battery module. Appl Therm Eng. 2016;99:672–82.

    CAS  Article  Google Scholar 

  14. 14.

    Zhao J, Rao Z, Huo Y, Liu X, Li Y. Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles. Appl Therm Eng. 2015;85:33–43.

    Article  Google Scholar 

  15. 15.

    Park S, Jung D. Battery cell arrangement and heat transfer fluid effects on the parasitic power consumption and the cell temperature distribution in a hybrid electric vehicle. J Power Sources. 2013;227:191–8.

    CAS  Article  Google Scholar 

  16. 16.

    Wang T, Tseng KJ, Zhao J, Wei Z. Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies. Appl Energy. 2014;134:229–38.

    Article  Google Scholar 

  17. 17.

    Arora S. Selection of thermal management system for modular battery packs of electric vehicles: a review of existing and emerging technologies. J Power Sources. 2018;400:621–40.

    CAS  Article  Google Scholar 

  18. 18.

    Jiaqiang E, Yue M, Chen J, Zhu H, Deng Y, Zhu Y, Zhang F, Wen M, Zhang B, Kang S. Effects of the different air cooling strategies on cooling performance of a lithium-ion battery module with baffle. Appl Therm Eng. 2018;144:231–41.

    Article  Google Scholar 

  19. 19.

    Li X, He F, Ma L. Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation. J Power Sources. 2013;238:395–402.

    CAS  Article  Google Scholar 

  20. 20.

    Ding B, Zhang ZH, Gong L, Xu MH, Huang ZQ. A novel thermal management scheme for 3D-IC chips with multi-cores and high power density. Appl Therm Eng. 2020;168:114832.

    Article  Google Scholar 

  21. 21.

    Landini S, Leworthy J, O’Donovan TS. A review of phase change materials for the thermal management and isothermalisation of lithium-ion cells. J Energy Storage. 2019;25:100887.

    Article  Google Scholar 

  22. 22.

    Huo Y, Rao Z, Liu X, Zhao J. Investigation of power battery thermal management by using mini-channel cold plate. Energy Convers Manag. 2015;89:387–95.

    Article  Google Scholar 

  23. 23.

    Qian Z, Li Y, Rao Z. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Convers Manag. 2016;126:622–31.

    CAS  Article  Google Scholar 

  24. 24.

    Azmi WH, Hamid KA, Usri NA, Mamat R, Sharma KV. Heat transfer augmentation of ethylene glycol: water nanofluids and applications—a review. Int Commun Heat Mass Transf. 2016;75:13–23.

    CAS  Article  Google Scholar 

  25. 25.

    Liu H, Shi H, Shen H, Xie G. The performance management of a Li-ion battery by using tree-like mini-channel heat sinks: experimental and numerical optimization. Energy. 2019;189:116150.

    Article  Google Scholar 

  26. 26.

    Li Y, Gong L, Xu M, Joshi Y. Enhancing the performance of aluminum foam heat sinks through integrated pin fins. Int J Heat Mass Transf. 2020;151:119376.

    CAS  Article  Google Scholar 

  27. 27.

    Chen J, Kang S, Jiaqiang E, Huang Z, Wei K, Zhang B, Zhu H, Deng Y, Zhang F, Liao G. Effects of different phase change material thermal management strategies on the cooling performance of the power lithium ion batteries: a review. J Power Sources. 2019;442:227228.

    CAS  Article  Google Scholar 

  28. 28.

    Yan J, Li K, Chen H, Wang Q, Sun J. Experimental study on the application of phase change material in the dynamic cycling of battery pack system. Energy Convers Manag. 2016;128:12–9.

    CAS  Article  Google Scholar 

  29. 29.

    Jianhua C, Dawei G, Jiexun L, Jieyuan W, Qingchun L. Thermal modeling of passive thermal management system with phase change material for LiFePO4 battery. In: 2012 IEEE vehicle power and propulsion conference. IEEE; 2012. p. 436–440.

  30. 30.

    Lin C, Xu S, Chang G, Liu J. Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets. J Power Sources. 2015;275:742–9.

    CAS  Article  Google Scholar 

  31. 31.

    Zhong G, Zhang G, Yang X, Li X, Wang Z, Yang C, Yang C, Gao G. Researches of composite phase change material cooling/resistance wire preheating coupling system of a designed 18650-type battery module. Appl Therm Eng. 2017;127:176–83.

    CAS  Article  Google Scholar 

  32. 32.

    Hekmat S, Molaeimanesh GR. Hybrid thermal management of a Li-ion battery module with phase change material and cooling water pipes: an experimental investigation. Appl Therm Eng. 2020;166:114759.

    Article  Google Scholar 

  33. 33.

    Kong D, Peng R, Ping P, Du J, Chen G, Wen J. A novel battery thermal management system coupling with PCM and optimized controllable liquid cooling for different ambient temperatures. Energy Convers Manag. 2020;204:112280.

    Article  Google Scholar 

  34. 34.

    Rao Z, Wang Q, Huang C. Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system. Appl Energy. 2016;164:659–69.

    Article  Google Scholar 

  35. 35.

    Bai F, Chen M, Song W, Feng Z, Li Y, Ding Y. Thermal management performances of PCM/water cooling-plate using for lithium-ion battery module based on non-uniform internal heat source. Appl Therm Eng. 2017;126:17–27.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 51676208 and 51906257), the Major Program of the Nature Science Foundation of Shandong Province (No. ZR2019ZD11), the Fundamental Research Funds for the Central Universities (No. 18CX07012A and No. 19CX05002A) and the Postdoctoral Innovation Foundation of Shandong Province (No. sdbh20180072).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bin Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, B., Qi, Z., Mao, C. et al. Numerical investigation on cooling performance of PCM/cooling plate hybrid system for power battery with variable discharging conditions. J Therm Anal Calorim 141, 625–633 (2020). https://doi.org/10.1007/s10973-020-09611-0

Download citation

Keywords

  • Battery cooling
  • Phase change materials
  • Cooling plate
  • Variable condition