Significance of Joule heating and viscous heating on heat transport of MoS2–Ag hybrid nanofluid past an isothermal wedge

Abstract

The problem of flow and heat transport of magneto-composite nanofluid over an isothermal wedge has not been addressed in the literature up to yet. Thus, this article features the laminar transport of Newtonian composite nanomaterial (C2H6O2–H2O hybrid base liquid + MoS2–Ag hybrid nanoparticles) in the presence of exponential space- and temperature-dependent heat source past an isothermal wedge. An incompressible and electrically conducting fluid is assumed. The effects of Joule heating and viscous heating are also accounted. Single-phase nanofluid model and boundary layer approximation are utilized to govern the equations of flow and heat transport phenomena. The solution of the simplified coupled system of dimensionless constraints is obtained by using the Runge–Kutta–Fehlberg method based on the shooting technique. Detailed analysis of active quantities of interest has been presented and discussed. The interesting physical quantities (friction factors and Nusselt number) are estimated. Also, the slope of the data point is calculated in order to estimate the amount of decrease/increase in physical quantities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Abbreviations

\( (u, v) \) :

Velocity components in \( x \) and \( y \) directions (m s−1)

\( T \) :

Temperature of the fluid (K)

\( T_{\text{w}} \) :

Wall temperature (K)

\( T_{\infty } \) :

Ambient temperature (K)

\( B \) :

Variable magnetic field (T)

\( K \) :

Variable porosity

\( q_{\text{T}} \) :

Temperature-dependent heat sink/source

\( q_{\text{E}} \) :

Exponential space-based heat source

\( n \) :

Dimensionless exponential index (positive)

\( {\text{Ec}} \) :

Eckert number

\( Q_{\text{T}} \) :

Temperature-based heat source parameter

\( Q_{\text{E}} \) :

Exponential space-based heat source parameter

\( { \Pr } \) :

Prandtl number

\( C_{\text{p}} \) :

Specific heat \( \left( {{\text{J}}\,{\text{kg}}^{ - 1} \,{\text{K}}^{ - 1} } \right) \)

\( k \) :

Thermal conductivity \( \left( {{\text{W}}\,{\text{m}}^{ - 1} \,{\text{K}}^{ - 1} } \right) \)

\( M \) :

Magnetic parameter

\( {\text{Nu}}_{\text{x}} \) :

Nusselt number

\( S_{\text{f}} \) :

Skin friction coefficient

\( \text{Re}_{\text{x}} \) :

Reynolds number

\( P \) :

Porosity parameter

\( \theta \) :

Dimensionless temperature

\( \mu \) :

Dynamic viscosity \( \left( {{\text{kg}}\,{\text{m}}\,{\text{s}}^{ - 1} } \right) \)

\( \rho \) :

Density \( \left( {{\text{kg}}\,{\text{m}}^{ - 3} } \right) \)

\( \nu \) :

Kinematic viscosity \( \left( {{\text{m}}^{2} \,{\text{s}}^{ - 1} } \right) \)

\( \sigma \) :

Electrical conductivity \( \left( {{\text{m}}^{ - 1} \,\varOmega^{ - 1} } \right) \)

\( \phi \) :

The total volume concentration of \( {\text{MoS}}_{ 2} \) and \( {\text{Ag}} \)

\( \sigma \) :

Electrical conductivity \( \left( {{\text{m}}^{ - 1} \,\varOmega^{ - 1} } \right) \)

\( l \) :

Base fluid

\( hnl \) :

Hybrid nanofluid

\( {\text{MoS}}_{2} ,\,{\text{Ag}} \) :

Nanoparticles

References

  1. 1.

    Choi SUS. Enhancing thermal conductivity of fluids with nanoparticles. In: ASME, FED 231/MD; 1995. p. 99–105.

  2. 2.

    Milanese M, Iacobazzi F, Colangelo G, de Risi A. An investigation of layering phenomenon at the liquid–solid interface in Cu and CuO based nanofluids. Int J Heat Mass Trans. 2016;103:564–71.

    CAS  Article  Google Scholar 

  3. 3.

    Visconti P, Primiceri P, Costantini P, Colangelo G, Cavalera G. Measurement and control system for thermosolar plant and performance comparison between traditional and nanofluid solar thermal collectors. Int J Smart Sens Intell Syst 2016; 9(3).

  4. 4.

    Colangelo G, Milanese M. Numerical simulation of thermal efficiency of an innovative Al2O3 nanofluid solar thermal collector: influence of nanoparticles concentration. Therm Sci. 2017;21:2769–79.

    Article  Google Scholar 

  5. 5.

    Colangelo G, Favale E, Miglietta P, Milanese M, de Risi A. Thermal conductivity, viscosity and stability of Al2O3-diathermic oil nanofluids for solar energy systems. Energy. 2016;95:124–36.

    CAS  Article  Google Scholar 

  6. 6.

    Ambreen T, Kim MH. Heat transfer and pressure drop correlations of nanofluids: a state of art review. Renew Sustain Energ Rev. 2018;91:564–83.

    CAS  Article  Google Scholar 

  7. 7.

    Chamkha AJ, Dogonchi AS, Ganji DD. Magneto-hydrodynamic flow and heat transfer of a hybrid nanofluid in a rotating system among two surfaces in the presence of thermal radiation and Joule heating. AIP Adv. 2019;9(2):025103.

    Article  Google Scholar 

  8. 8.

    Ghadikolaei SS, Gholinia M, Hoseini ME, Ganji DD. Natural convection MHD flow due to MoS2–Ag nanoparticles suspended in C2H6O2H2O hybrid base fluid with thermal radiation. J Taiwan Inst Chem Eng. 2019;97:12–23.

    CAS  Article  Google Scholar 

  9. 9.

    Chamkha AJ, Doostanidezfuli A, Izadpanahi E, Ghalambaz MJ. Phase-change heat transfer of single/hybrid nanoparticles-enhanced phase-change materials over a heated horizontal cylinder confined in a square cavity. Adv Powder Technol. 2017;28(2):385–97.

    CAS  Article  Google Scholar 

  10. 10.

    Amala S, Mahanthesh B. Hybrid nanofluid flow over a vertical rotating plate in the presence of hall current, nonlinear convection and heat absorption. J Nanofluids. 2018;7(6):1138–48.

    Article  Google Scholar 

  11. 11.

    Hayat T, Nadeem S. Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results Phys. 2017;7:2317–24.

    Article  Google Scholar 

  12. 12.

    Shruthy M, Mahanthesh B. Rayleigh-Bénard convection in Casson and hybrid nanofluids: an analytical investigation. J Nanofluids. 2019;8(1):222–9.

    Article  Google Scholar 

  13. 13.

    Ashlin TS, Mahanthesh B. Exact solution of non-coaxial rotating and non-linear convective flow of Cu–Al2O3–H2O hybrid nanofluids over an infinite vertical plate subjected to heat source and radiative heat. J Nanofluids. 2019;8(4):781–94.

    Article  Google Scholar 

  14. 14.

    Mehryan SA, Izadi M, Namazian Z, Chamkha AJ. Natural convection of multi-walled carbon nanotubes-Fe3O4/water magnetic hybrid nanofluid flowing in porous medium considering the impacts of magnetic field-dependent viscosity. J Therm Anal Calorim. 2019;138(2):1541–55.

    CAS  Article  Google Scholar 

  15. 15.

    Mohebbi R, Izadi M, Delouei AA, Sajjadi H. Effect of MWCNT–Fe3O4/water hybrid nanofluid on the thermal performance of ribbed channel with apart sections of heating and cooling. J Therm Anal Calorim. 2019;135(6):3029–42.

    CAS  Article  Google Scholar 

  16. 16.

    Maskeen MM, Zeeshan A, Mehmood OU, Hassan M. Heat transfer enhancement in hydromagnetic alumina–copper/water hybrid nanofluid flow over a stretching cylinder. J Therm Anal Calorim. 2019;138(2):1127–36.

    CAS  Article  Google Scholar 

  17. 17.

    Nkurikiyimfura I, Wang Y, Pan Z. Heat transfer enhancement by magnetic nanofluids—a review. Renew Sustain Energy Rev. 2013;21:548–61.

    CAS  Article  Google Scholar 

  18. 18.

    Mahanthesh B, Gireesha BJ, Shashikumar NS, Shehzad SA. Marangoni convective MHD flow of SWCNT and MWCNT nanoliquids due to a disk with solar radiation and irregular heat source. Phys E Low Dimens Syst Nanostruct. 2017;94:25–30.

    CAS  Article  Google Scholar 

  19. 19.

    Mahanthesh B, Gireesha BJ, Shehzad SA, Rauf A, Kumar PS. Nonlinear radiated MHD flow of nanoliquids due to a rotating disk with irregular heat source and heat flux condition. Phys B Condens Matter. 2018;537:98–104.

    CAS  Article  Google Scholar 

  20. 20.

    Chamkha AJ, Mujtaba M, Quadri A, Issa C. Thermal radiation effects on MHD forced convection flow adjacent to a non-isothermal wedge in the presence of a heat source or sink. Heat Mass Transf. 2003;39(4):305–12.

    Article  Google Scholar 

  21. 21.

    Rashidi MM, Ali M, Freidoonimehr N, Rostami B, Hossain MA. Mixed convective heat transfer for MHD viscoelastic fluid flow over a porous wedge with thermal radiation. Adv Mech Eng. 2014;6:735939.

    Article  Google Scholar 

  22. 22.

    Ishak A, Nazar R, Pop I. MHD boundary-layer flow of a micropolar fluid past a wedge with constant wall heat flux. Commun Nonlinear Sci Numer Simul. 2009;14(1):109–18.

    Article  Google Scholar 

  23. 23.

    Khan WA, Hamad MA, Ferdows M. Heat transfer analysis for Falkner-Skan boundary layer nanofluid flow past a wedge with convective boundary condition considering temperature-dependent viscosity. Proc Inst Mech Eng Part N J Nanoeng Nanosyst. 2013;227(1):19–27.

    Google Scholar 

  24. 24.

    Kandasamy R, Muhaimin I, Khamis AB, BinRoslan R. Unsteady Hiemenz flow of Cu-nanofluid over a porous wedge in the presence of thermal stratification due to solar energy radiation: Lie group transformation. Int J Therm Sci. 2013;65:196–205.

    CAS  Article  Google Scholar 

  25. 25.

    Khan WA, Pop I. Boundary layer flow past a wedge moving in a nanofluid. Math Probl Eng. 2013;2013:1–7.

    Google Scholar 

  26. 26.

    Khan U, Ahmed N, Mohyud-Din ST. Heat transfer enhancement in hydromagnetic dissipative flow past a moving wedge suspended by H2O–aluminum alloy nanoparticles in the presence of thermal radiation. Int J Hydrog Energy. 2017;42(39):24344–634.

    Google Scholar 

  27. 27.

    Rashad AM. Impact of thermal radiation on MHD slip flow of a ferrofluid over a non-isothermal wedge. J Magn Magn Mater. 2017;422:25–31.

    CAS  Article  Google Scholar 

  28. 28.

    Ullah I, Shafie S, Khan I, Hsiao KL. Brownian diffusion and thermophoresis mechanisms in Casson fluid over a moving wedge. Results Phys. 2018;9:183–94.

    Article  Google Scholar 

Download references

Acknowledgements

The first author (B. Mahanthesh) gratefully acknowledges the support of the Management of CHRIST (Deemed to be University), Bangalore, India, for pursuing this work. Also, we are very grateful for the editor and reviewers for their constructive suggestions.

Funding

There are no funders to report for this submission.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. A. Shehzad.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahanthesh, B., Shehzad, S.A., Ambreen, T. et al. Significance of Joule heating and viscous heating on heat transport of MoS2–Ag hybrid nanofluid past an isothermal wedge. J Therm Anal Calorim 143, 1221–1229 (2021). https://doi.org/10.1007/s10973-020-09578-y

Download citation

Keywords

  • Hybrid nanofluid
  • Nanoparticles
  • Exponential space-based heat source
  • Magnetohydrodynamics
  • Wedge flow