Hybrid thermal management of lithium-ion batteries using nanofluid, metal foam, and phase change material: an integrated numerical–experimental approach


Safety issues of Li-ion batteries imposed by unfavorable thermal behavior accentuate the need for efficient thermal management systems to prevent the runaway conditions. To that end, a hybrid thermal management system is designed and further investigated numerically and experimentally in the present study. The passive cooling system is fabricated by saturating copper foam with paraffin as the phase change material (PCM) and integrated with an active cooling system with alumina nanofluid as the coolant fluid. Results for various Reynolds numbers and different heating powers indicate that the hybrid nanofluid cooling system can successfully fulfill safe operation of the battery during stressful operating conditions. The maximum time in which all PCM field is changed to the liquid phase is defined as the onset of the stressful conditions. Therefore, the start time of stressful conditions at 41 W and Re 420 is increased from 3700 s with nanofluid composed of 1% volume fraction nanoparticles (VF-1%) to 4600 s with nanofluid VF-2% during high current discharge rates. Nanofluid cooling extends the operating time of the battery in comparison with the water-based cooling system with 200-s (nanofluid with volume fraction of 1%) and 900-s (nanofluid with volume fraction of 2%) increases in operating time at Reynolds of 420. Using nanofluid, instead of water, postpones the onset of paraffin phase transition effectively and prolongs its melting time which consequently leads to a decrease in the rate of temperature rise.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11



Alternating current


Computational fluid dynamics


Hybrid electric vehicle


Lithium-ion battery


Phase change material


Pores per inch


Thermal management system

c p :

Specific heat (kJ kg−1 K−1)

d :

Diameter (m)

h :

Enthalpy (kJ)

\(k_{\text{B}}\) :

Boltzmann’s constant \(= 1.38066 \times 10^{ - 23} \,{\text{J}}\,{\text{K}}^{ - 1}\)

K :

Thermal conductivity (W m−1 K−1)

p :

Pressure (kPa)

\(P\) :

Power (W)


Prandtl number

\(R\) :

Electrical resistance (Ω)


Reynolds number

T :

Temperature (K)

u :

Velocity (m s−1)

\(V\) :

Supplied voltage (V)


Volume fraction

\(\Delta H\) :

Sensible heat (kJ)

\(\beta\) :

Melting amount

\(\gamma\) :

Latent heat (kJ)

\(\rho\) :

Mass density (kg m−3)

\(\mu\) :

Dynamic viscosity (kg m−1 s−1)

\(\varepsilon\) :

Porosity (–)

\(\omega\) :

Pore density (pores per inch, PPI)




Base fluid


Freezing point

i, j, k:

Indices for xyz direction






  1. 1.

    Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medina-Elizade M. Global temperature change. Proc Natl Acad Sci. 2006;103(39):14288–93. https://doi.org/10.1073/pnas.0606291103.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Bistline JE, Rai V. The role of carbon capture technologies in greenhouse gas emissions-reduction models: a parametric study for the U.S. power sector. Energy Policy. 2010;38(2):1177–91. https://doi.org/10.1016/j.enpol.2009.11.008.

    CAS  Article  Google Scholar 

  3. 3.

    Sources of Greenhouse Gas Emissions. US EPA. 2019. https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions. Accessed 14 Dec 2019.

  4. 4.

    Gurney KR, Razlivanov I, Song Y, Zhou Y, Benes B, Abdul-Massih M. Quantification of fossil fuel CO2 emissions on the building/street scale for a large U.S. city. Environ Sci Technol. 2012;46(21):12194–202. https://doi.org/10.1021/es3011282.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Hertzke P, Müller N, Schaufuss P, Schenk S, Wu T. Expanding electric-vehicle adoption despite early growing pains. McKinsey & Company. 2019. https://www.mckinsey.com/industries/automotive-and-assembly/our-insights/expanding-electric-vehicle-adoption-despite-early-growing-pains. Accessed 14 Dec 2019.

  6. 6.

    Mehrabi-Kermani M, Houshfar E, Ashjaee M. A novel hybrid thermal management for Li-ion batteries using phase change materials embedded in copper foams combined with forced-air convection. Int J Therm Sci. 2019;141:47–61. https://doi.org/10.1016/j.ijthermalsci.2019.03.026.

    CAS  Article  Google Scholar 

  7. 7.

    Panchal S, Mathewson S, Fraser R, Culham R, Fowler M. Thermal management of lithium-ion pouch cell with indirect liquid cooling using dual cold plates approach. Warrendale: SAE International; 2015.

    Book  Google Scholar 

  8. 8.

    Hannan MA, Hoque MM, Mohamed A, Ayob A. Review of energy storage systems for electric vehicle applications: issues and challenges. Renew Sust Energy Rev. 2017;69:771–89. https://doi.org/10.1016/j.rser.2016.11.171.

    Article  Google Scholar 

  9. 9.

    Väyrynen A, Salminen J. Lithium ion battery production. J Chem Thermodyn. 2012;46:80–5. https://doi.org/10.1016/j.jct.2011.09.005.

    CAS  Article  Google Scholar 

  10. 10.

    Chen W-C, Li J-D, Shu C-M, Wang Y-W. Effects of thermal hazard on 18650 lithium-ion battery under different states of charge. J Therm Anal Calorim. 2015;121(1):525–31. https://doi.org/10.1007/s10973-015-4672-3.

    CAS  Article  Google Scholar 

  11. 11.

    Ouyang D, He Y, Chen M, Liu J, Wang J. Experimental study on the thermal behaviors of lithium-ion batteries under discharge and overcharge conditions. J Therm Anal Calorim. 2018;132(1):65–75. https://doi.org/10.1007/s10973-017-6888-x.

    CAS  Article  Google Scholar 

  12. 12.

    Lu L, Han X, Li J, Hua J, Ouyang M. A review on the key issues for lithium-ion battery management in electric vehicles. J Power Sources. 2013;226:272–88. https://doi.org/10.1016/j.jpowsour.2012.10.060.

    CAS  Article  Google Scholar 

  13. 13.

    Wang Q, Zhao X, Ye J, Sun Q, Ping P, Sun J. Thermal response of lithium-ion battery during charging and discharging under adiabatic conditions. J Therm Anal Calorim. 2016;124(1):417–28. https://doi.org/10.1007/s10973-015-5100-4.

    CAS  Article  Google Scholar 

  14. 14.

    Pesaran AA, editor. Battery thermal management in EVs and HEVs: issues and solutions. In: Advanced automotive battery conference; 2001; Las Vegas, Nevada, USA.

  15. 15.

    Pesaran AA, Vlahinos A, Burch SD. Thermal performance of EV and HEV battery modules and packs. Golden, CO, USA1997. Report no.: NREL/CP-540-23527.

  16. 16.

    Sabbah R, Kizilel R, Selman JR, Al-Hallaj S. Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: limitation of temperature rise and uniformity of temperature distribution. J Power Sources. 2008;182(2):630–8. https://doi.org/10.1016/j.jpowsour.2008.03.082.

    CAS  Article  Google Scholar 

  17. 17.

    Mahamud R, Park C. Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. J Power Sources. 2011;196(13):5685–96. https://doi.org/10.1016/j.jpowsour.2011.02.076.

    CAS  Article  Google Scholar 

  18. 18.

    Park H. A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles. J Power Sources. 2013;239:30–6. https://doi.org/10.1016/j.jpowsour.2013.03.102.

    CAS  Article  Google Scholar 

  19. 19.

    Kim G-H, Pesaran A. Battery thermal management design modeling. World Electr Veh J. 2007;1(1):126–33. https://doi.org/10.3390/wevj1010126.

    Article  Google Scholar 

  20. 20.

    Tran T-H, Harmand S, Sahut B. Experimental investigation on heat pipe cooling for hybrid electric vehicle and electric vehicle lithium-ion battery. J Power Sources. 2014;265:262–72. https://doi.org/10.1016/j.jpowsour.2014.04.130.

    CAS  Article  Google Scholar 

  21. 21.

    Rao Z, Wang S, Wu M, Lin Z, Li F. Experimental investigation on thermal management of electric vehicle battery with heat pipe. Energy Convers Manag. 2013;65:92–7. https://doi.org/10.1016/j.enconman.2012.08.014.

    Article  Google Scholar 

  22. 22.

    Qian Z, Li Y, Rao Z. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Convers Manag. 2016;126:622–31. https://doi.org/10.1016/j.enconman.2016.08.063.

    CAS  Article  Google Scholar 

  23. 23.

    Rao Z, Qian Z, Kuang Y, Li Y. Thermal performance of liquid cooling based thermal management system for cylindrical lithium-ion battery module with variable contact surface. Appl Therm Eng. 2017;123:1514–22. https://doi.org/10.1016/j.applthermaleng.2017.06.059.

    Article  Google Scholar 

  24. 24.

    Fang G, Huang Y, Yuan W, Yang Y, Tang Y, Ju W, et al. Thermal management for a tube–shell Li-ion battery pack using water evaporation coupled with forced air cooling. RSC Adv. 2019;9(18):9951–61. https://doi.org/10.1039/C8RA10433F.

    CAS  Article  Google Scholar 

  25. 25.

    Wu M-S, Liu KH, Wang Y-Y, Wan C-C. Heat dissipation design for lithium-ion batteries. J Power Sources. 2002;109(1):160–6. https://doi.org/10.1016/S0378-7753(02)00048-4.

    CAS  Article  Google Scholar 

  26. 26.

    Zhao R, Gu J, Liu J. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries. J Power Sources. 2015;273:1089–97. https://doi.org/10.1016/j.jpowsour.2014.10.007.

    CAS  Article  Google Scholar 

  27. 27.

    Panchal S, Khasow R, Dincer I, Agelin-Chaab M, Fraser R, Fowler M. Numerical modeling and experimental investigation of a prismatic battery subjected to water cooling. Numer Heat Transf A Appl. 2017;71(6):626–37. https://doi.org/10.1080/10407782.2016.1277938.

    CAS  Article  Google Scholar 

  28. 28.

    Liang J, Gan Y, Li Y. Investigation on the thermal performance of a battery thermal management system using heat pipe under different ambient temperatures. Energy Convers Manag. 2018;155:1–9. https://doi.org/10.1016/j.enconman.2017.10.063.

    Article  Google Scholar 

  29. 29.

    Mahdavi M, Tiari S, Pawar V. A numerical study on the combined effect of dispersed nanoparticles and embedded heat pipes on melting and solidification of a shell and tube latent heat thermal energy storage system. J Energy Storage. 2020;27:101086. https://doi.org/10.1016/j.est.2019.101086.

    Article  Google Scholar 

  30. 30.

    Sun Z, Fan R, Yan F, Zhou T, Zheng N. Thermal management of the lithium-ion battery by the composite PCM-Fin structures. Int J Heat Mass Transf. 2019;145:118739. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118739.

    Article  Google Scholar 

  31. 31.

    Safdari M, Ahmadi R, Sadeghzadeh S. Numerical investigation on PCM encapsulation shape used in the passive-active battery thermal management. Energy. 2020;193:116840. https://doi.org/10.1016/j.energy.2019.116840.

    Article  Google Scholar 

  32. 32.

    Mancin S, Diani A, Doretti L, Hooman K, Rossetto L. Experimental analysis of phase change phenomenon of paraffin waxes embedded in copper foams. Int J Therm Sci. 2015;90:79–89. https://doi.org/10.1016/j.ijthermalsci.2014.11.023.

    CAS  Article  Google Scholar 

  33. 33.

    Baby R, Balaji C. Experimental investigations on phase change material based finned heat sinks for electronic equipment cooling. Int J Heat Mass Transf. 2012;55(5):1642–9. https://doi.org/10.1016/j.ijheatmasstransfer.2011.11.020.

    CAS  Article  Google Scholar 

  34. 34.

    Yang X, Guo Z, Liu Y, Jin L, He Y-L. Effect of inclination on the thermal response of composite phase change materials for thermal energy storage. Appl Energy. 2019;238:22–33. https://doi.org/10.1016/j.apenergy.2019.01.074.

    CAS  Article  Google Scholar 

  35. 35.

    Yang X, Yu J, Guo Z, Jin L, He Y-L. Role of porous metal foam on the heat transfer enhancement for a thermal energy storage tube. Appl Energy. 2019;239:142–56. https://doi.org/10.1016/j.apenergy.2019.01.075.

    Article  Google Scholar 

  36. 36.

    Yang X, Wei P, Cui X, Jin L, He Y-L. Thermal response of annuli filled with metal foam for thermal energy storage: an experimental study. Appl Energy. 2019;250:1457–67. https://doi.org/10.1016/j.apenergy.2019.05.096.

    CAS  Article  Google Scholar 

  37. 37.

    Yang X, Yu J, Xiao T, Hu Z, He Y-L. Design and operating evaluation of a finned shell-and-tube thermal energy storage unit filled with metal foam. Appl Energy. 2020;261:114385. https://doi.org/10.1016/j.apenergy.2019.114385.

    Article  Google Scholar 

  38. 38.

    Al Hallaj S, Selman JR. A novel thermal management system for electric vehicle batteries using phase-change material. J Electrochem Soc. 2000;147(9):3231–6. https://doi.org/10.1149/1.1393888.

    Article  Google Scholar 

  39. 39.

    Wang Z, Li X, Zhang G, Lv Y, Wang C, He F, et al. Thermal management investigation for lithium-ion battery module with different phase change materials. RSC Adv. 2017;7(68):42909–18. https://doi.org/10.1039/C7RA08181B.

    CAS  Article  Google Scholar 

  40. 40.

    Karimi G, Azizi M, Babapoor A. Experimental study of a cylindrical lithium ion battery thermal management using phase change material composites. J Energy Storage. 2016;8:168–74. https://doi.org/10.1016/j.est.2016.08.005.

    Article  Google Scholar 

  41. 41.

    Hussain A, Abidi IH, Tso CY, Chan KC, Luo Z, Chao CYH. Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials. Int J Therm Sci. 2018;124:23–35. https://doi.org/10.1016/j.ijthermalsci.2017.09.019.

    CAS  Article  Google Scholar 

  42. 42.

    Wilke S, Schweitzer B, Khateeb S, Al-Hallaj S. Preventing thermal runaway propagation in lithium ion battery packs using a phase change composite material: an experimental study. J Power Sources. 2017;340:51–9. https://doi.org/10.1016/j.jpowsour.2016.11.018.

    CAS  Article  Google Scholar 

  43. 43.

    Maghsoudi P, Siavashi M. Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity. J Therm Anal Calorim. 2019;135(2):947–61. https://doi.org/10.1007/s10973-018-7335-3.

    CAS  Article  Google Scholar 

  44. 44.

    Ramezanpour M, Siavashi M. Application of SiO2–water nanofluid to enhance oil recovery. J Therm Anal Calorim. 2019;135(1):565–80. https://doi.org/10.1007/s10973-018-7156-4.

    CAS  Article  Google Scholar 

  45. 45.

    Rabbani P, Hamzehpour A, Ashjaee M, Najafi M, Houshfar E. Experimental investigation on heat transfer of MgO nanofluid in tubes partially filled with metal foam. Powder Technol. 2019;354:734–42. https://doi.org/10.1016/j.powtec.2019.06.037.

    CAS  Article  Google Scholar 

  46. 46.

    Ranjbaran YS, Haghparast SJ, Shojaeefard MH, Molaeimanesh GR. Numerical evaluation of a thermal management system consisting PCM and porous metal foam for Li-ion batteries. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08989-w.

    Article  Google Scholar 

  47. 47.

    Zhang J, Li X, He F, He J, Zhong Z, Zhang G. Experimental investigation on thermal management of electric vehicle battery module with paraffin/expanded graphite composite phase change material. Int J Photoenergy. 2017;2017:8. https://doi.org/10.1155/2017/2929473.

    CAS  Article  Google Scholar 

  48. 48.

    Zhao R, Zhang S, Liu J, Gu J. A review of thermal performance improving methods of lithium ion battery: electrode modification and thermal management system. J Power Sources. 2015;299:557–77. https://doi.org/10.1016/j.jpowsour.2015.09.001.

    CAS  Article  Google Scholar 

  49. 49.

    Wang Y-W, Jiang J-M, Chung Y-H, Chen W-C, Shu C-M. Forced-air cooling system for large-scale lithium-ion battery modules during charge and discharge processes. J Therm Anal Calorim. 2019;135(5):2891–901. https://doi.org/10.1007/s10973-018-7646-4.

    CAS  Article  Google Scholar 

  50. 50.

    Ling Z, Wang F, Fang X, Gao X, Zhang Z. A hybrid thermal management system for lithium ion batteries combining phase change materials with forced-air cooling. Appl Energy. 2015;148:403–9. https://doi.org/10.1016/j.apenergy.2015.03.080.

    CAS  Article  Google Scholar 

  51. 51.

    Zhao Y, Zou B, Li C, Ding Y. Active cooling based battery thermal management using composite phase change materials. Energy Proc. 2019;158:4933–40. https://doi.org/10.1016/j.egypro.2019.01.697.

    CAS  Article  Google Scholar 

  52. 52.

    Mancin S, Zilio C, Diani A, Rossetto L. Air forced convection through metal foams: experimental results and modeling. Int J Heat Mass Transf. 2013;62:112–23. https://doi.org/10.1016/j.ijheatmasstransfer.2013.02.050.

    CAS  Article  Google Scholar 

  53. 53.

    McKinney BL, Wierschem GL, Mrotek EN. Thermal management of lead-acid batteries for electric vehicles. Warrendale: SAE International Congress and Exposition, SAE International; 1983.

    Google Scholar 

  54. 54.

    Liu G, Ouyang M, Lu L, Li J, Han X. Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors. J Therm Anal Calorim. 2014;116(2):1001–10. https://doi.org/10.1007/s10973-013-3599-9.

    CAS  Article  Google Scholar 

  55. 55.

    Galushkin NE, Yazvinskaya NN, Galushkin DN. Mechanism of thermal runaway in lithium-ion cells. J Electrochem Soc. 2018;165(7):A1303–8. https://doi.org/10.1149/2.0611807jes.

    CAS  Article  Google Scholar 

  56. 56.

    Liu J, Wang Z, Gong J, Liu K, Wang H, Guo L. Experimental study of thermal runaway process of 18650 lithium-ion battery. Materials. 2017;10(3):230. https://doi.org/10.3390/ma10030230.

    CAS  Article  PubMed Central  Google Scholar 

  57. 57.

    Adio SA, Sharifpur M, Meyer JP. Influence of ultrasonication energy on the dispersion consistency of Al2O3–glycerol nanofluid based on viscosity data, and model development for the required ultrasonication energy density. J Exp Nanosci. 2016;11(8):630–49. https://doi.org/10.1080/17458080.2015.1107194.

    CAS  Article  Google Scholar 

  58. 58.

    Osman S, Sharifpur M, Meyer JP. Experimental investigation of convection heat transfer in the transition flow regime of aluminium oxide–water nanofluids in a rectangular channel. Int J Heat Mass Transf. 2019;133:895–902. https://doi.org/10.1016/j.ijheatmasstransfer.2018.12.169.

    CAS  Article  Google Scholar 

  59. 59.

    Mintsa HA, Roy G, Nguyen CT, Doucet D. New temperature dependent thermal conductivity data for water-based nanofluids. Int J Therm Sci. 2009;48(2):363–71. https://doi.org/10.1016/j.ijthermalsci.2008.03.009.

    CAS  Article  Google Scholar 

  60. 60.

    Corcione M. Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids. Energy Convers Manag. 2011;52(1):789–93. https://doi.org/10.1016/j.enconman.2010.06.072.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ehsan Houshfar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kiani, M., Ansari, M., Arshadi, A.A. et al. Hybrid thermal management of lithium-ion batteries using nanofluid, metal foam, and phase change material: an integrated numerical–experimental approach. J Therm Anal Calorim 141, 1703–1715 (2020). https://doi.org/10.1007/s10973-020-09403-6

Download citation


  • Computational fluid dynamics
  • Thermal management
  • Battery
  • Nanofluid
  • Metal foam