Bubble dynamics and heat transfer characteristics on a micropillar-structured surface with different nucleation site positions

Abstract

Microstructured surfaces have been extensively employed to enhance nucleate boiling. However, enhancement mechanisms have not been fully understood. In this work, a three-dimensional numerical model is developed to investigate growth and departure dynamics of a single bubble for nucleate boiling on a micropillar-structured surface. In the model, the volume of fluid method is used to capture vapor–liquid interfaces, and evaporations in both vapor–liquid interface and microlayer are taken into account. Moreover, a pressure outlet boundary condition is proposed to reasonably describe the inflow and outflow on side surfaces of the computational domain. The focus of this work is to answer how the location of nucleation site affects bubble dynamics and the resultant heat transfer characteristics. Two typical locations are considered: the center in the micropillar gap and the corner between the micropillar and substrate, referred to as the center nucleation and corner nucleation. The results show that the bubble with the center nucleation exhibits symmetric growth and departure, whereas the symmetry is broken up for the bubble with the corner nucleation. Asymmetric growth and departure induce asymmetric temperature profiles inside/around the bubble, leading to a faster departure and a smaller departure diameter for the bubble with the corner nucleation. Moreover, contributions of microlayer evaporation and vapor–liquid interface evaporation for the two nucleation locations are also discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Abbreviations

A b–p :

Contact area between bubble and micropillars/mm2

A b–s :

Contact area between bubble and substrate/mm2

A surface :

Contact area between microlayer cell and solid wall/m2

C p :

Specific heat at constant pressure/J kg−1 K−1

E :

Total energy per unit mass/J kg−1

F b :

Buoyancy/N

\(\overrightarrow {{F_{\text{m}} }}\) :

Source term of vapor/liquid mass transfer rate due to evaporation for Navier–Stokes equation/kg m−2 s−2

F s :

Surface tension/N

\(\overrightarrow {{F_{\upsigma} }}\) :

Source term of surface tension for Navier–Stokes equation/kg m−2 s−2

\(\overrightarrow {g}\) :

Gravitational acceleration/m s−2

h lv :

Latent heat of vaporization/J kg−1

h surface :

Boiling heat transfer coefficient of entire micropillar-structured surface/W m−2 K−1

k :

Thermal conductivity/W m−1 K−1

\(\dot{m}\) :

Phase change rate due to evaporation in the cell/kg m−3 s−1

\(\overrightarrow {n}\) :

Unit vector normal to interface

p :

Pressure/Pa

\(\dot{Q}_{\text{h}}\) :

Energy term caused by latent heat of vaporization for energy equation/J m−3 s−1

\(\dot{Q}_{\text{m}}\) :

Internal energy term of vapor/liquid mass transfer rate due to evaporation for energy equation/J m−3 s−1

q :

Heat flux/kW m−2

R :

Universal gas constant/8.314 J mol−1 K−1

R s :

Bubble bottom radius/m

r :

Horizontal distance between microlayer cell and nucleation site/m

T :

Temperature/K

t :

Time/s

\(\overrightarrow {t}\) :

Unit vector tangent to interface

\(\overrightarrow {u}\) :

Velocity vector/m s−1

V bubble :

Bubble volume/mm3

α :

Volume fraction

δ 0 :

Initial microlayer thickness/m

δ(t):

Microlayer thickness/m

θ :

Static contact angle/°

κ :

Curvature of vapor–liquid interface/m−1

μ :

Dynamic viscosity/kg m−1 s−1

ρ :

Density/kg m−3

σ :

Surface tension coefficient/N m−1

CEN:

Center nucleation

CON:

Corner nucleation

L:

Bubble L region

l:

Liquid phase

lv:

Vapor–liquid interface

ml:

Microlayer

pillar_side:

Side surface of micropillar

pillar_top:

Top surface of micropillar

R:

Bubble R region

sat:

Saturation

substrate:

Substrate

v:

Vapor phase

W:

Solid wall

References

  1. 1.

    Mudawar I. Assessment of high-heat-flux thermal management schemes. IEEE Trans Compon Packag Technol. 2001;24:122–41.

    CAS  Article  Google Scholar 

  2. 2.

    Mudawar I. Recent advances in high-flux, two-phase thermal management. J Therm Sci Eng Appl. 2013;5:021012.

    Article  Google Scholar 

  3. 3.

    Akbari A, Alavi FSA, Maghsoodi S, Kootenaei AS. Pool boiling heat transfer characteristics of graphene-based aqueous nanofluids. J Therm Anal Calorim. 2019;135:697–711.

    CAS  Article  Google Scholar 

  4. 4.

    Salehi H, Hormozi F. Prediction of Al2O3-water nanofluids pool boiling heat transfer coefficient at low heat fluxes by using response surface methodology. J Therm Anal Calorim. 2019;137:1069–82.

    CAS  Article  Google Scholar 

  5. 5.

    Liang G, Mudawar I. Review of pool boiling enhancement by surface modification. Int J Heat Mass Transf. 2019;128:892–933.

    Article  Google Scholar 

  6. 6.

    Dikici B, Eno E, Compere M. Pool boiling enhancement with environmentally friendly surfactant additives. J Therm Anal Calorim. 2014;116:1387–94.

    CAS  Article  Google Scholar 

  7. 7.

    Wei JJ, Honda H. Effects of fin geometry on boiling heat transfer from silicon chips with micro-pin-fins immersed in FC-72. Int J Heat Mass Transf. 2003;46:4059–70.

    CAS  Article  Google Scholar 

  8. 8.

    Dong L, Quan X, Cheng P. An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures. Int J Heat Mass Transf. 2014;71:189–96.

    Article  Google Scholar 

  9. 9.

    Yu DI, Kwak HJ, Noh H, Park HS, Fezzaa K, Kim MH. Synchrotron x-ray imaging visualization study of capillary-induced flow and critical heat flux on surfaces with engineered micropillars. Sci Adv. 2018;4:e1701571.

    Article  Google Scholar 

  10. 10.

    Kharangate CR, Mudawar I. Review of computational studies on boiling and condensation. Int J Heat Mass Transf. 2017;108:1164–96.

    CAS  Article  Google Scholar 

  11. 11.

    Zhao Z, Zhang J, Jia D, Zhao K, Zhang X, Jiang P. Thermal performance analysis of pool boiling on an enhanced surface modified by the combination of microstructures and wetting properties. Appl Therm Eng. 2017;117:417–26.

    CAS  Article  Google Scholar 

  12. 12.

    Zhou Z, Shi J, Chen HH, Schafer SR, Chen CL. Two-phase flow over flooded micro-pillar structures with engineered wettability pattern. Int J Heat Mass Transf. 2014;71:593–605.

    Article  Google Scholar 

  13. 13.

    Chen B, Zhou Z, Shi J, Schafer SR, Chen CL. Flooded two-phase flow dynamics and heat transfer with engineered wettability on microstructured surfaces. J Heat Transfer. 2015;137:091021.

    Article  Google Scholar 

  14. 14.

    Lee W, Son G, Yoon HY. Numerical study of bubble growth and boiling heat transfer on a microfinned surface. Int Commun Heat Mass Transfer. 2012;39:52–7.

    Article  Google Scholar 

  15. 15.

    Lee W, Son G. Three-dimensional simulation of bubble growth on horizontal microstructured surfaces. In: Proceedings of Cht-12: Ichmt international symposium on advances in computational heat transfer. Begell House, Inc. 2012. pp. 1091–110.

  16. 16.

    Lee WH. Pressure iteration scheme for two-phase flow modeling. In: Veziroglu TN, editor. Multiphase transport: fundamentals, reactor safety, applications, vol. 1. Washington DC: Hemisphere Publishing; 1980. p. 407–31.

    Google Scholar 

  17. 17.

    Judd RL, Hwang KS. A comprehensive model for nucleate pool boiling heat transfer including microlayer evaporation. J Heat Transfer. 1976;98:623–9.

    CAS  Article  Google Scholar 

  18. 18.

    Benjamin RJ, Balakrishnan AR. Nucleate pool boiling heat transfer of pure liquids at low to moderate heat fluxes. Int J Heat Mass Transf. 1996;39:2495–504.

    CAS  Article  Google Scholar 

  19. 19.

    Yabuki T, Nakabeppu O. Heat transfer mechanisms in isolated bubble boiling of water observed with MEMS sensor. Int J Heat Mass Transf. 2014;76:286–97.

    Article  Google Scholar 

  20. 20.

    Gibou F, Chen L, Nguyen D, Banerjee S. A level set based sharp interface method for the multiphase incompressible Navier–Stokes equations with phase change. J Comput Phys. 2007;222:536–55.

    Article  Google Scholar 

  21. 21.

    Kunkelmann C, Stephan P. Numerical simulation of the transient heat transfer during nucleate boiling of refrigerant HFE-7100. Int J Refrig. 2010;33:1221–8.

    CAS  Article  Google Scholar 

  22. 22.

    Chen Z, Utaka Y. On heat transfer and evaporation characteristics in the growth process of a bubble with microlayer structure during nucleate boiling. Int J Heat Mass Transf. 2015;81:750–9.

    Article  Google Scholar 

  23. 23.

    Sato Y, Niceno B. A depletable micro-layer model for nucleate pool boiling. J Comput Phys. 2015;300:20–52.

    CAS  Article  Google Scholar 

  24. 24.

    Sato Y, Niceno B. Nucleate pool boiling simulations using the interface tracking method: boiling regime from discrete bubble to vapor mushroom region. Int J Heat Mass Transf. 2017;105:505–24.

    CAS  Article  Google Scholar 

  25. 25.

    Lay JH, Dhir VK. Shape of a vapor stem during nucleate boiling of saturated liquids. Trans ASME J Heat Transfer. 1995;117:394–401.

    CAS  Article  Google Scholar 

  26. 26.

    Pastuszko R. Pool boiling heat transfer on micro-fins with wire mesh: experiments and heat flux prediction. Int J Therm Sci. 2018;125:197–209.

    CAS  Article  Google Scholar 

  27. 27.

    Chen HX, Sun Y, Gong YF, Huang LB. Visual measurement and data analysis of pool boiling on silicon surfaces. J Chem Ind Eng (China). 2019;90:1309–17 (in Chinese).

    Google Scholar 

  28. 28.

    Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys. 1981;39:201–25.

    Article  Google Scholar 

  29. 29.

    Brackbill JU, Kothe DB, Zemach C. A continuum method for modeling surface tension. J Comput Phys. 1992;100:335–54.

    CAS  Article  Google Scholar 

  30. 30.

    Sun DL, Xu JL, Wang L. Development of a vapor-liquid phase change model for volume-of-fluid method in FLUENT. Int Commun Heat Mass Transfer. 2012;39:1101–6.

    Article  Google Scholar 

  31. 31.

    Utaka Y, Kashiwabara Y, Ozaki M. Microlayer structure in nucleate boiling of water and ethanol at atmospheric pressure. Int J Heat Mass Transf. 2013;57:222–30.

    CAS  Article  Google Scholar 

  32. 32.

    Hsu YY. On the size range of active nucleation cavities on a heating surface. J Heat Transfer. 1962;84:207–13.

    CAS  Article  Google Scholar 

  33. 33.

    Carey VP. Liquid-vapor phase-change phenomena. New York: Hemisphere Publishing; 1992.

    Google Scholar 

  34. 34.

    Issa RI. Solution of the implicitly discretised fluid flow equations by operator-splitting. J Comput Phys. 1986;62:40–65.

    Article  Google Scholar 

  35. 35.

    Karri SBR. Dynamics of bubble departure in micro-gravity. Chem Eng Commun. 1988;70:127–35.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the National Natural Science Foundation of China (No. 51576063) and Youth Talents Project of Joint Funds of Ministry of Education for Equipment Pre-research in 2019 (6141A02033526).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiao-Dong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Sun, Y., Xiao, H. et al. Bubble dynamics and heat transfer characteristics on a micropillar-structured surface with different nucleation site positions. J Therm Anal Calorim 141, 447–464 (2020). https://doi.org/10.1007/s10973-020-09301-x

Download citation

Keywords

  • Numerical simulation
  • Nucleate boiling
  • Bubble dynamics
  • Micropillar surface
  • Nucleation locations