Kinetic analysis of the multistep thermal decomposition of Maya Blue-type pigments to evaluate thermal stability

Abstract

This study aimed to evaluate the practical usefulness of kinetic deconvolution analysis (kDa) as a means to obtain the kinetic information on specific reaction steps that characterize the thermal properties of materials for various purposes. The partially overlapping multistep thermal decomposition of Maya Blue (MB)-type pigments was used as an example reaction. Red and yellow MB-type pigment materials, composed of a fibrous clay mineral and an organic dye, were synthesized using palygorskite and sepiolite as the clay minerals and Methyl Red and Alizarin as red and yellow dyes, respectively. The multistep thermal decompositions of the MB-type pigments were investigated using thermogravimetry. The thermoanalytical data were deconvoluted into individual component reaction steps using an empirical kDa technique based on a cumulative kinetic equation that considers the contribution of each reaction step to the overall thermal decomposition. By comparing the kDa results for the thermal decomposition of the composites with those for the decomposition of pure palygorskite and sepiolite, the thermal decomposition steps for the incorporated organic dyes were extracted from the multistep thermal decompositions of the MB-type pigments. Finally, the thermal stabilities of MB-type pigments comprising different clay minerals and organic dyes were compared using the kinetic results extracted for the reaction step associated with the decomposition of the organic dyes.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Chen M, Li X, Wang Y, Wang C, Liang T, Zhang H, et al. Hydrogen generation by steam reforming of tar model compounds using lanthanum modified Ni/sepiolite catalysts. Energy Convers Manag. 2019;184:315–26. https://doi.org/10.1016/j.enconman.2019.01.066.

    CAS  Article  Google Scholar 

  2. 2.

    Chen M, Wang C, Wang Y, Tang Z, Yang Z, Zhang H, et al. Hydrogen production from ethanol steam reforming: effect of Ce content on catalytic performance of Co/Sepiolite catalyst. Fuel. 2019;247:344–55. https://doi.org/10.1016/j.fuel.2019.03.059.

    CAS  Article  Google Scholar 

  3. 3.

    Chuaicham C, Pawar R, Sasaki K. Dye-sensitized photocatalyst of sepiolite for organic dye degradation. Catalysts. 2019. https://doi.org/10.3390/catal9030235.

    Article  Google Scholar 

  4. 4.

    Guerrero-Torres A, Jiménez-Gómez CP, Cecilia JA, García-Sancho C, Franco F, Quirante-Sánchez JJ, et al. Ni supported on sepiolite catalysts for the hydrogenation of furfural to value-added chemicals: influence of the synthesis method on the catalytic performance. Top Catal. 2019;62(5–6):535–50. https://doi.org/10.1007/s11244-019-01168-z.

    CAS  Article  Google Scholar 

  5. 5.

    Huang C, Wang Y, Gong M, Wang W, Mu Y, Hu Z-H. α-MnO2/palygorskite composite as an effective catalyst for heterogeneous activation of peroxymonosulfate (PMS) for the degradation of Rhodamine B. Sep Purif Technol. 2020. https://doi.org/10.1016/j.seppur.2019.115877.

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Kuang M, Zhang J, Wang W, Chen J, Cao Y, Liu R, et al. The effect of support on the structure and photocatalytic activity of ternary ZnO–ZnFe2O4/palygorskite composite photocatalysts. Adv Powder Technol. 2019. https://doi.org/10.1016/j.apt.2019.08.030.

    Article  Google Scholar 

  7. 7.

    Lakbita O, Rhouta B, Maury F, Senocq F, Amjoud M, Daoudi L. On the key role of the surface of palygorskite nanofibers in the stabilization of hexagonal metastable β-Ag2CO3 phase in palygorskite-based nanocomposites. Appl Clay Sci. 2019;172:123–34. https://doi.org/10.1016/j.clay.2019.02.023.

    CAS  Article  Google Scholar 

  8. 8.

    Luo T, Wang M, Tian X, Nie Y, Yang C, Lin HM, et al. Safe and efficient degradation of metronidazole using highly dispersed β-FeOOH on palygorskite as heterogeneous Fenton-like activator of hydrogen peroxide. Chemosphere. 2019;236:124367. https://doi.org/10.1016/j.chemosphere.2019.124367.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Luo Y, Zhang M, Yin H, Yao J, Chen S-M, Liu X. One pot controllable synthesis of palygorskite/bismuth oxyiodide hierarchical microspheres for improved visible-light photocatalytic performance. Colloids Surf A. 2019. https://doi.org/10.1016/j.colsurfa.2019.06.038.

    Article  Google Scholar 

  10. 10.

    Lycourghiotis S, Kordouli E, Sygellou L, Bourikas K, Kordulis C. Nickel catalysts supported on palygorskite for transformation of waste cooking oils into green diesel. Appl Catal B. 2019. https://doi.org/10.1016/j.apcatb.2019.118059.

    Article  Google Scholar 

  11. 11.

    Ouyang J, Zhao Z, Suib SL, Yang H. Degradation of congo red dye by a Fe2O3@CeO2–ZrO2/palygorskite composite catalyst: synergetic effects of Fe2O3. J Colloid Interface Sci. 2019;539:135–45. https://doi.org/10.1016/j.jcis.2018.12.052.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Xie A, Tang Y, Huang X, Jin X, Gu P, Luo S, et al. Three-dimensional nanoflower MnCrO/Sepiolite catalyst with increased SO2 resistance for NH3-SCR at low temperature. Chem Eng J. 2019;370:897–905. https://doi.org/10.1016/j.cej.2019.03.226.

    CAS  Article  Google Scholar 

  13. 13.

    Shi T, Li S, Zhang H, Li Z, Zhu M. Preparation of palygorskite-based phase change composites for thermal energy storage and their applications in Trombe walls. J Wuhan Univ Mater Sci Ed. 2017;32(6):1306–17. https://doi.org/10.1007/s11595-017-1746-z.

    CAS  Article  Google Scholar 

  14. 14.

    Zhang Y, Yu C, Hu P, Tong W, Lv F, Chu PK, et al. Mechanical and thermal properties of palygorskite poly(butylene succinate) nanocomposite. Appl Clay Sci. 2016;119:96–102. https://doi.org/10.1016/j.clay.2015.07.022.

    CAS  Article  Google Scholar 

  15. 15.

    Yang D, Peng F, Zhang H, Guo H, Xiong L, Wang C, et al. Preparation of palygorskite paraffin nanocomposite suitable for thermal energy storage. Appl Clay Sci. 2016;126:190–6. https://doi.org/10.1016/j.clay.2016.03.014.

    CAS  Article  Google Scholar 

  16. 16.

    Liu Y, Han S, Jiang Y, Liang J, Shang R, Hao B, et al. Poly(lactic acid)/palygorskite nanocomposites: enhanced the physical and thermal properties. Polym Compos. 2017;38(8):1600–8. https://doi.org/10.1002/pc.23727.

    CAS  Article  Google Scholar 

  17. 17.

    Yang D, Shi S, Xiong L, Guo H, Zhang H, Chen X, et al. Paraffin/Palygorskite composite phase change materials for thermal energy storage. Sol Energy Mater Sol Cells. 2016;144:228–34. https://doi.org/10.1016/j.solmat.2015.09.002.

    CAS  Article  Google Scholar 

  18. 18.

    Konuklu Y, Ersoy O. Preparation and characterization of sepiolite-based phase change material nanocomposites for thermal energy storage. Appl Therm Eng. 2016;107:575–82. https://doi.org/10.1016/j.applthermaleng.2016.07.012.

    CAS  Article  Google Scholar 

  19. 19.

    Herrero M, Asensio M, Núñez K, Merino JC, Pastor JM. Morphological, thermal, and mechanical behavior of polyamide11/sepiolite bio-nanocomposites prepared by melt compounding and in situ polymerization. Polym Compos. 2019;40(S1):E704–13. https://doi.org/10.1002/pc.24962.

    CAS  Article  Google Scholar 

  20. 20.

    Cui W, Zhang H, Xia Y, Zou Y, Xiang C, Chu H, et al. Preparation and thermophysical properties of a novel form-stable CaCl2·6H2O/sepiolite composite phase change material for latent heat storage. J Therm Anal Calorim. 2017;131(1):57–63. https://doi.org/10.1007/s10973-017-6170-2.

    CAS  Article  Google Scholar 

  21. 21.

    Shen Q, Liu S, Ouyang J, Yang H. Sepiolite supported stearic acid composites for thermal energy storage. RSC Adv. 2016;6(113):112493–501. https://doi.org/10.1039/c6ra22015k.

    CAS  Article  Google Scholar 

  22. 22.

    Polette-Niewold LA, Manciu FS, Torres B, Alvarado M Jr, Chianelli RR. Organic/inorganic complex pigments: ancient colors Maya Blue. J Inorg Biochem. 2007;101(11–12):1958–73. https://doi.org/10.1016/j.jinorgbio.2007.07.009.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Chiari G, Giustetto R, Druzik J, Doehne E, Ricchiardi G. Pre-columbian nanotechnology: reconciling the mysteries of the Maya Blue pigment. Appl Phys A. 2007;90(1):3–7. https://doi.org/10.1007/s00339-007-4287-z.

    CAS  Article  Google Scholar 

  24. 24.

    Giustetto R, Seenivasan K, Bordiga S. Spectroscopic characterization of a sepiolite-based Maya Blue pigment. Period Mineral. 2010;79:21–37. https://doi.org/10.2451/2010pm0019.

    Article  Google Scholar 

  25. 25.

    Ovarlez S, Giulieri F, Delamare F, Sbirrazzuoli N, Chaze A-M. Indigo–sepiolite nanohybrids: temperature-dependent synthesis of two complexes and comparison with indigo–palygorskite systems. Microporous Mesoporous Mater. 2011;142(1):371–80. https://doi.org/10.1016/j.micromeso.2010.12.025.

    CAS  Article  Google Scholar 

  26. 26.

    Hubbard B, Kuang W, Moser A, Facey GA, Detellier C. Structural study of Maya Blue: textural, thermal and solidstate multinuclear magnetic resonance characterization of the palygorskite-indigo and sepiolite-indigo adducts. Clays Clay Miner. 2003;51(3):318–26. https://doi.org/10.1346/ccmn.2003.0510308.

    CAS  Article  Google Scholar 

  27. 27.

    Ovarlez S, Giulieri F, Chaze AM, Delamare F, Raya J, Hirschinger J. The incorporation of indigo molecules in sepiolite tunnels. Chem Eur J. 2009;15(42):11326–32. https://doi.org/10.1002/chem.200901482.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Yamamoto Y, Koga N. Thermal decomposition of Maya Blue: extraction of indigo thermal decomposition steps from a multistep heterogeneous reaction using a kinetic deconvolution analysis. Molecules. 2019;24(13):2515. https://doi.org/10.3390/molecules24132515.

    CAS  Article  PubMed Central  Google Scholar 

  29. 29.

    Giustetto R, Seenivasan K, Bonino F, Ricchiardi G, Bordiga S, Chierotti MR, et al. Host/guest interactions in a sepiolite-based Maya Blue pigment: a spectroscopic study. J Phys Chem C. 2011;115(34):16764–76. https://doi.org/10.1021/jp203270c.

    CAS  Article  Google Scholar 

  30. 30.

    Caliandro R, Toson V, Palin L, Conterosito E, Aceto M, Gianotti V, et al. New hints on the Maya Blue formation process by PCA-assisted in situ XRPD/PDF and optical spectroscopy. Chem Eur J. 2019;25(49):11503–11. https://doi.org/10.1002/chem.201901932.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Sánchez-Ochoa F, Cocoletzi GH, Canto G. Trapping and diffusion of organic dyes inside of palygorskite clay: the ancient Maya Blue pigment. Microporous Mesoporous Mater. 2017;249:111–7. https://doi.org/10.1016/j.micromeso.2017.04.060.

    CAS  Article  Google Scholar 

  32. 32.

    Post JE, Heaney PJ. Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of palygorskite. Am Mineral. 2008;93(4):667–75. https://doi.org/10.2138/am.2008.2590.

    CAS  Article  Google Scholar 

  33. 33.

    Nagata H. On dehydration of bound water of sepiolite. Clays Clay Miner. 1974;22(3):285–93. https://doi.org/10.1346/ccmn.1974.0220310.

    CAS  Article  Google Scholar 

  34. 34.

    Giustetto R, Llabres IXFX, Ricchiardi G, Bordiga S, Damin A, Gobetto R, et al. Maya Blue: a computational and spectroscopic study. J Phys Chem B. 2005;109(41):19360–8. https://doi.org/10.1021/jp048587h.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Manciu FS, Reza L, Polette LA, Torres B, Chianelli RR. Raman and infrared studies of synthetic Maya pigments as a function of heating time and dye concentration. J Raman Spectrosc. 2007;38(9):1193–8. https://doi.org/10.1002/jrs.1751.

    CAS  Article  Google Scholar 

  36. 36.

    Ovarlez S, Chaze A-M, Giulieri F, Delamare F. Indigo chemisorption in sepiolite. Application to Maya Blue formation. C R Chim. 2006;9(10):1243–8. https://doi.org/10.1016/j.crci.2006.03.001.

    CAS  Article  Google Scholar 

  37. 37.

    Sánchez-Jiménez PE, Perejón A, Criado JM, Diánez MJ, Pérez-Maqueda LA. Kinetic model for thermal dehydrochlorination of poly(vinyl chloride). Polymer. 2010;51(17):3998–4007. https://doi.org/10.1016/j.polymer.2010.06.020.

    CAS  Article  Google Scholar 

  38. 38.

    Koga N, Goshi Y, Yamada S, Pérez-Maqueda LA. Kinetic approach to partially overlapped thermal decomposition processes. J Therm Anal Calorim. 2013;111(2):1463–74. https://doi.org/10.1007/s10973-012-2500-6.

    CAS  Article  Google Scholar 

  39. 39.

    Koga N. Physico-geometric approach to the kinetics of overlapping solid-state reactions. In: Vyazovkin S, Koga N, Schick C, editors. Handbook of thermal analysis and calorimetry. 2nd ed. Amsterdam: Elsevier; 2018. p. 213–51.

    Google Scholar 

  40. 40.

    Koga N, Kodani S. Thermally induced carbonation of Ca(OH)2 in a CO2 atmosphere: kinetic simulation of overlapping mass-loss and mass-gain processes in a solid-gas system. Phys Chem Chem Phys. 2018;20(41):26173–89. https://doi.org/10.1039/c8cp05701j.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Hara D, Nishikawa K, Koga N. Characterization of carbon/carbon composites by kinetic deconvolution analysis for a thermal oxidation process: an examination using a series of mechanical pencil leads. Ind Eng Chem Res. 2018;57(43):14460–9. https://doi.org/10.1021/acs.iecr.8b02478.

    CAS  Article  Google Scholar 

  42. 42.

    Koga N, Kameno N, Tsuboi Y, Fujiwara T, Nakano M, Nishikawa K, et al. Multistep thermal decomposition of granular sodium perborate tetrahydrate: a kinetic approach to complex reactions in solid-gas systems. Phys Chem Chem Phys. 2018;20(18):12557–73. https://doi.org/10.1039/c8cp01138a.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Nishikawa K, Ueta Y, Hara D, Yamada S, Koga N. Kinetic characterization of multistep thermal oxidation of carbon/carbon composite in flowing air. J Therm Anal Calorim. 2017;128(2):891–906. https://doi.org/10.1007/s10973-016-5993-6.

    CAS  Article  Google Scholar 

  44. 44.

    Muravyev NV, Koga N, Meerov DB, Pivkina AN. Kinetic analysis of overlapping multistep thermal decomposition comprising exothermic and endothermic processes: thermolysis of ammonium dinitramide. Phys Chem Chem Phys. 2017;19(4):3254–64. https://doi.org/10.1039/c6cp08218a.

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Fujiwara T, Yoshikawa M, Koga N. Kinetic approach to multistep thermal behavior of Ag2CO3–graphite mixtures: possible formation of intermediate solids with Ag2O–Ag and Ag2CO3–Ag core–shell structures. Thermochim Acta. 2016;644:50–60. https://doi.org/10.1016/j.tca.2016.10.001.

    CAS  Article  Google Scholar 

  46. 46.

    Kameno N, Yamada S, Amimoto T, Amimoto K, Ikeda H, Koga N. Thermal degradation of poly(lactic acid) oligomer: reaction mechanism and multistep kinetic behavior. Polym Degrad Stab. 2016;134:284–95. https://doi.org/10.1016/j.polymdegradstab.2016.10.018.

    CAS  Article  Google Scholar 

  47. 47.

    Nakano M, Wada T, Koga N. Exothermic behavior of thermal decomposition of sodium percarbonate: kinetic deconvolution of successive endothermic and exothermic processes. J Phys Chem A. 2015;119(38):9761–9. https://doi.org/10.1021/acs.jpca.5b07044.

    CAS  Article  PubMed  Google Scholar 

  48. 48.

    Kitabayashi S, Koga N. Thermal decomposition of tin(II) oxyhydroxide and subsequent oxidation in air: kinetic deconvolution of overlapping heterogeneous processes. J Phys Chem C. 2015;119(28):16188–99. https://doi.org/10.1021/acs.jpcc.5b04975.

    CAS  Article  Google Scholar 

  49. 49.

    Noda Y, Koga N. Phenomenological kinetics of the carbonation reaction of lithium hydroxide monohydrate: role of surface product layer and possible existence of a liquid phase. J Phys Chem C. 2014;118(10):5424–36. https://doi.org/10.1021/jp500322p.

    CAS  Article  Google Scholar 

  50. 50.

    Kitabayashi S, Koga N. Physico-geometrical mechanism and overall kinetics of thermally induced oxidative decomposition of tin(II) oxalate in air: formation process of microstructural tin(IV) oxide. J Phys Chem C. 2014;118(31):17847–61. https://doi.org/10.1021/jp505937k.

    CAS  Article  Google Scholar 

  51. 51.

    Yoshikawa M, Goshi Y, Yamada S, Koga N. Multistep kinetic behavior in the thermal degradation of poly(l-lactic acid): a physico-geometrical kinetic interpretation. J Phys Chem B. 2014;118(38):11397–405. https://doi.org/10.1021/jp507247x.

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Tsuboi Y, Koga N. Thermal decomposition of biomineralized calcium carbonate: correlation between the thermal behavior and structural characteristics of avian eggshell. ACS Sustain Chem Eng. 2018;6(4):5283–95. https://doi.org/10.1021/acssuschemeng.7b04943.

    CAS  Article  Google Scholar 

  53. 53.

    Kameno N, Koga N. Heterogeneous kinetic features of the overlapping thermal dehydration and melting of thermal energy storage material: sodium thiosulfate pentahydrate. J Phys Chem C. 2018;122(15):8480–90. https://doi.org/10.1021/acs.jpcc.8b02202.

    CAS  Article  Google Scholar 

  54. 54.

    Nakano M, Fujiwara T, Koga N. Thermal decomposition of silver acetate: physico-geometrical kinetic features and formation of silver nanoparticles. J Phys Chem C. 2016;120(16):8841–54. https://doi.org/10.1021/acs.jpcc.6b02377.

    CAS  Article  Google Scholar 

  55. 55.

    Wada T, Nakano M, Koga N. Multistep kinetic behavior of the thermal decomposition of granular sodium percarbonate: hindrance effect of the outer surface layer. J Phys Chem A. 2015;119(38):9749–60. https://doi.org/10.1021/acs.jpca.5b07042.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Yoshikawa M, Yamada S, Koga N. Phenomenological interpretation of the multistep thermal decomposition of silver carbonate to form silver metal. J Phys Chem C. 2014;118(15):8059–70. https://doi.org/10.1021/jp501407p.

    CAS  Article  Google Scholar 

  57. 57.

    Wada T, Koga N. Kinetics and mechanism of the thermal decomposition of sodium percarbonate: role of the surface product layer. J Phys Chem A. 2013;117(9):1880–9. https://doi.org/10.1021/jp3123924.

    CAS  Article  PubMed  Google Scholar 

  58. 58.

    Koga N, Suzuki Y, Tatsuoka T. Thermal dehydration of magnesium acetate tetrahydrate: formation and in situ crystallization of anhydrous glass. J Phys Chem B. 2012;116(49):14477–86. https://doi.org/10.1021/jp3052517.

    CAS  Article  PubMed  Google Scholar 

  59. 59.

    Koga N, Yamada S, Kimura T. Thermal decomposition of silver carbonate: phenomenology and physicogeometrical kinetics. J Phys Chem C. 2013;117(1):326–36. https://doi.org/10.1021/jp309655s.

    CAS  Article  Google Scholar 

  60. 60.

    Koga N, Kikuchi S. Thermal behavior of perlite concrete used in a sodium-cooled fast reactor: multistep reaction kinetics and melting for safety assessment. J Therm Anal Calorim. 2019;138(2):983–96. https://doi.org/10.1007/s10973-019-08351-0.

    CAS  Article  Google Scholar 

  61. 61.

    Kikuchi S, Koga N, Yamazaki A. Comparative study on the thermal behavior of structural concretes of sodium-cooled fast reactor: siliceous concretes. J Therm Anal Calorim. 2019;137(4):1211–24. https://doi.org/10.1007/s10973-019-08045-7.

    CAS  Article  Google Scholar 

  62. 62.

    Kikuchi S, Koga N, Seino H, Ohno S. Experimental study and kinetic analysis on sodium oxide–silica reaction. J Nucl Sci Technol. 2016;53(5):682–91. https://doi.org/10.1080/00223131.2015.1121843.

    CAS  Article  Google Scholar 

  63. 63.

    Kikuchi S, Koga N, Seino H, Ohno S. Kinetic study on liquid sodium–silica reaction for safety assessment of sodium-cooled fast reactor. J Therm Anal Calorim. 2015;121(1):45–55. https://doi.org/10.1007/s10973-014-4387-x.

    CAS  Article  Google Scholar 

  64. 64.

    Koga N, Nishikawa K. Mutual relationship between solid-state aragonite–calcite transformation and thermal dehydration of included water in coral aragonite. Cryst Growth Des. 2014;14(2):879–87. https://doi.org/10.1021/cg4018689.

    CAS  Article  Google Scholar 

  65. 65.

    Koga N, Kasahara D, Kimura T. Aragonite crystal growth and solid-state aragonite–calcite transformation: a physico–geometrical relationship via thermal dehydration of included water. Cryst Growth Des. 2013;13(5):2238–46. https://doi.org/10.1021/cg400350w.

    CAS  Article  Google Scholar 

  66. 66.

    Chiari G, Giustetto R, Ricchiardi G. Crystal structure refinements of palygorskite and Maya Blue from molecular modelling and powder synchrotron diffraction. Eur J Mineral. 2003;15(1):21–33. https://doi.org/10.1127/0935-1221/2003/0015-0021.

    CAS  Article  Google Scholar 

  67. 67.

    Giustetto R, Chiari G. Crystal structure refinement of palygorskite from neutron powder diffraction. Eur J Mineral. 2004;16(3):521–32. https://doi.org/10.1127/0935-1221/2004/0016/0521.

    CAS  Article  Google Scholar 

  68. 68.

    Preisinger A. X-ray study of the structure of sepiolite. Clays Clay Miner. 1959;6(1):61–7. https://doi.org/10.1346/CCMN.1957.0060106.

    Article  Google Scholar 

  69. 69.

    Zhou W, Liu H, Xu T, Jin Y, Ding S, Chen J. Insertion of isatin molecules into the nanostructure of palygorskite. RSC Adv. 2014;4(94):51978–83. https://doi.org/10.1039/c4ra06299j.

    CAS  Article  Google Scholar 

  70. 70.

    Leitão IMV, Seixas de Melo JS. Maya blue, an ancient guest–host pigment: synthesis and models. J Chem Educ. 2013;90(11):1493–7. https://doi.org/10.1021/ed300425c.

    CAS  Article  Google Scholar 

  71. 71.

    Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B. 2011;115(8):1780–91. https://doi.org/10.1021/jp110895z.

    CAS  Article  PubMed  Google Scholar 

  72. 72.

    Svoboda R, Málek J. Applicability of Fraser–Suzuki function in kinetic analysis of complex crystallization processes. J Therm Anal Calorim. 2013;111(2):1045–56. https://doi.org/10.1007/s10973-012-2445-9.

    CAS  Article  Google Scholar 

  73. 73.

    Šesták J, Berggren G. Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochim Acta. 1971;3:1–12. https://doi.org/10.1016/0040-6031(71)85051-7.

    Article  Google Scholar 

  74. 74.

    Šesták J. Diagnostic limits of phenomenological kinetic models introducing the accommodation function. J Therm Anal. 1990;36(6):1997–2007. https://doi.org/10.1007/bf01914116.

    Article  Google Scholar 

  75. 75.

    Šesták J. Rationale and fallacy of thermoanalytical kinetic patterns. J Therm Anal Calorim. 2011;110(1):5–16. https://doi.org/10.1007/s10973-011-2089-1.

    CAS  Article  Google Scholar 

  76. 76.

    Ozawa T. Non-isothermal kinetics and generalized time. Thermochim Acta. 1986;100(1):109–18. https://doi.org/10.1016/0040-6031(86)87053-8.

    CAS  Article  Google Scholar 

  77. 77.

    Málek J. The kinetic analysis of non-isothermal data. Thermochim Acta. 1992;200:257–69. https://doi.org/10.1016/0040-6031(92)85118-f.

    Article  Google Scholar 

  78. 78.

    Koga N. Kinetic analysis of thermoanalytical data by extrapolating to infinite temperature. Thermochim Acta. 1995;258:145–59. https://doi.org/10.1016/0040-6031(95)02249-2.

    CAS  Article  Google Scholar 

  79. 79.

    Gotor FJ, Criado JM, Málek J, Koga N. Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A. 2000;104(46):10777–82. https://doi.org/10.1021/jp0022205.

    CAS  Article  Google Scholar 

  80. 80.

    Criado JM, Pérez-Maqueda LA, Gotor FJ, Málek J, Koga N. A unified theory for the kinetic analysis of solid state reactions under any thermal pathway. J Therm Anal Calorim. 2003;72(3):901–6. https://doi.org/10.1023/a:1025078501323.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The present work was supported by JSPS KAKENHI Grant Number 17H00820.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nobuyoshi Koga.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2415 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, Y., Okazaki, T., Sakai, Y. et al. Kinetic analysis of the multistep thermal decomposition of Maya Blue-type pigments to evaluate thermal stability. J Therm Anal Calorim 142, 1073–1085 (2020). https://doi.org/10.1007/s10973-020-09278-7

Download citation

Keywords

  • Thermogravimetry
  • Thermal decomposition
  • Maya Blue-type pigment
  • Kinetic deconvolution analysis
  • Thermal stability