Effect of organically intercalation modified layered double hydroxides-graphene oxide hybrids on flame retardancy of thermoplastic polyurethane nanocomposites

Abstract

Flame retardant thermoplastic polyurethane (TPU) nanocomposites were prepared by melt blending using organically intercalation modified layered double hydroxides-graphene oxide hybrids (LDHs-GO). Modification process of LDHs-GO was carried out by using sodium dodecyl sulfate (SDS) in water/ethanol medium. X-ray diffraction, Fourier transform infrared spectra and scanning electron microscope micrograph results showed the SDS intercalation modified LDHs-GO (SDS-LDHs-GO) was synthesized successfully. Flame retardancy, suppression smoke and thermal stability properties of the well-dispersed TPU nanocomposites were evaluated and compared with each other. The CCT results showed that the pHRR was significantly decreased after incorporating SDS-LDHs-GO nanoparticles. In particular, the pHRR of the TPU5 containing 20 mass% SDS-LDHs-5%GO hybrid was decreased by 77.2% compared to that of pure TPU. The addition of SDS-LDHs-GO hybrids can enhance the suppression smoke performance of TPU nanocomposites as well, and the efficiency was dependent on the catalytic carbonization of lamellar LDHs and both the adsorption and barrier effect of GO. The TG results confirmed that GO can improve the thermal stability of nanocomposites by promoting char formation. This work provides a novel modification strategy for enhancing the dispersion and flame retardant efficiency of LDHs.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Oliveira SV, Araújo EM, Pereira CMC, Leite AMD. Polyethylene/bentonite clay nanocomposite with flame retardant properties. Polímeros. 2017;27:91–8.

    Google Scholar 

  2. 2.

    Xu WZ, Li AJ, Liu YC, Chen R, Li W. CuMoO4@hexagonal boron nitride hybrid: an ecofriendly flame retardant for polyurethane elastomer. J Mater Sci. 2018;53(16):11265–79.

    CAS  Google Scholar 

  3. 3.

    Zhou KQ, Zhang QJ, Liu JJ, Wang B, Jiang SH, Shi YQ, Hu Y, Gui Z. Synergetic effect of ferrocene and MoS2 in polystyrene composites with enhanced thermal stability, flame retardant and smoke suppression properties. RSC Adv. 2014;4(26):1320513214.

    Google Scholar 

  4. 4.

    Wang XR, Li Y, Tang LP, Gan W, Zhou W, Zhao YF, Bai DS. Fabrication of Zn-Ti layered double hydroxide by varying cationic ratio of Ti4+ and its application as UV absorbent. Chin Chem Lett. 2017;28:256–61.

    Google Scholar 

  5. 5.

    Parida KM, Mohapatra L. Carbonate intercalated Zn/Fe layered double hydroxide: a novel photocatalyst for the enhanced photo degradation of azo dyes. Chem Eng J. 2012;179:131–9.

    CAS  Google Scholar 

  6. 6.

    Jagadale AD, Guan GQ, Li XM, Du X, Ma XL, Hao XG, Abudula A. Ultrathin nanoflakes of cobalt–manganese layered double hydroxide with high reversibility for asymmetric supercapacitor. J Power Sources. 2016;306:526–34.

    CAS  Google Scholar 

  7. 7.

    Ma LJ, Wang Q, Islam SM, Liu YC, Ma SL, Kanatzidis MG. Highly selective and efficient removal of heavy metals by layered double hydroxide intercalated with the MoS42− ion. J Am Chem Soc. 2016;138:2858–66.

    CAS  PubMed  Google Scholar 

  8. 8.

    Cai J, Heng HM, Hu XP, Xu QK, Miao F. A facile method for the preparation of novel fire-retardant layered double hydroxide and its application as nanofiller in UP. Polym Degrad Stab. 2016;126:47–57.

    CAS  Google Scholar 

  9. 9.

    Poonoosamya J, Brandta F, Stekielb M, Keglera P, Klinkenberga M, Winklerb B, Vinograda V, Bosbacha D, Deissmann G. Zr-containing layered double hydroxides: synthesis, characterization, and evaluation of thermodynamic properties. Appl Clay Sci. 2018;151:54–65.

    Google Scholar 

  10. 10.

    Kuila T, Acharya H, Srivastava SK, Bhowmick AK. Effect of vinyl acetate content on the mechanical and thermal properties of ethylene vinyl acetate/MgAl layered double hydroxide nanocomposites. J Appl Polym Sci. 2008;108(2):1329–35.

    CAS  Google Scholar 

  11. 11.

    Conterosito E, Gianotti V, Palin L, Boccaleri E, Viterbo D, Milanesio M. Facile preparation methods of hydrotalcite layered materials and their structural characterization by combined techniques. Inorg Chim Acta. 2018;47:36–50.

    Google Scholar 

  12. 12.

    Katsuomi T. Recent development of layered double hydroxide-derived catalysts -Rehydration, reconstitution, and supporting, aiming at commercial application-. Appl Clay Sci. 2017;136:112–41.

    Google Scholar 

  13. 13.

    Zhou M, Yan LC, Ling H, Diao YP, Pang XL, Wang YL, Gao KW. Design and fabrication of enhanced corrosion resistance Zn–Al layered double hydroxides films based anion-exchange mechanism on magnesium alloys. Appl Surf Sci. 2017;404:246–53.

    CAS  Google Scholar 

  14. 14.

    Zheng YL, Chen YH. Preparation of polypropylene/Mg–Al layered double hydroxides nanocomposites through wet pan-milling: formation of a second-staging structure in LDHs intercalates. RSC Adv. 2017;7:1520–30.

    CAS  Google Scholar 

  15. 15.

    Allou NB, Saikia P, Borah A, Goswamee RL. Hybrid nanocomposites of layered double hydroxides: an update of their biological applications and future prospects. Colloid Polym Sci. 2017;295(5):725–47.

    CAS  Google Scholar 

  16. 16.

    Du BX, Ma HY, Fang ZP. How nano-fillers affect thermal stability and flame retardancy of intumescent flame retarded polypropylene. Polym Adv Technol. 2011;22(7):1139–46.

    CAS  Google Scholar 

  17. 17.

    Gao YS, Wang Q, Wang JY, Huang L, Yan XR, Zhang X, He QL, Xing ZP, Guo ZH. Synthesis of highly efficient flame retardant high-density polyethylene nanocomposites with inorgano-layered double hydroxides as nanofiller using solvent mixing method. ACS Appl Mater Interfaces. 2014;6(7):5094–104.

    CAS  PubMed  Google Scholar 

  18. 18.

    Yu JF, Wang Q, O’Hare D, Sun LY. Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem Soc Rev. 2017;46:5950–74.

    CAS  PubMed  Google Scholar 

  19. 19.

    Sun MZ, Zhang P, Wu DS, Frost RL. Novel approach to fabricate organo-LDH hybrid by the intercalation of sodium hexadecyl sulfate into tricalcium aluminate. Appl Clay Sci. 2017;140:25–30.

    CAS  Google Scholar 

  20. 20.

    Elbasuney S. Surface engineering of layered double hydroxide (LDH) nanoparticles for polymer flame retardancy. Powder Technol. 2015;277:63–73.

    CAS  Google Scholar 

  21. 21.

    Kalali EN, Wang X, Wang DY. Functionalized layered double hydroxide-based epoxy nanocomposites with improved flame retardancy and mechanical properties. J Mater Chem A. 2015;3:6819–26.

    CAS  Google Scholar 

  22. 22.

    Nyambo C, Songtipya P, Manias E, Jimenez-Gascoc MM, Wilkie CA. Effect of MgAl-layered double hydroxide exchanged with linear alkyl carboxylates on fire-retardancy of PMMA and PS. J Mater Chem. 2008;18(40):4827–38.

    CAS  Google Scholar 

  23. 23.

    Wang LL, Li B, Zhang XC, Chen CX, Zhang F. Effect of intercalated anions on the performance of Ni–Al LDH nanofiller of ethylene vinyl acetate composites. Appl Clay Sci. 2012;56:110–9.

    CAS  Google Scholar 

  24. 24.

    Surudzic R, Jankovic A, Mitric M, Matic I, Juranic ZD, Zivkovic L, Miskovic-Stankovic V, Rhee KY, Park SJ, Hui D. The effect of graphene loading on mechanical, thermal and biological properties of poly(vinyl alcohol)/graphene nanocomposites. J Ind Eng Chem. 2016;34:250–7.

    CAS  Google Scholar 

  25. 25.

    Wang R, Zhuo DX, Weng ZX, Wu LX, Cheng XY, Zhou Y, Wang JL, Xuan BW. A novel nanosilica/graphene oxide hybrid and its flame retarding epoxy resin with simultaneously improved mechanical, thermal conductivity, and dielectric properties. J Mater Chem A. 2015;3:9826–36.

    CAS  Google Scholar 

  26. 26.

    Wang X, Song L, Pornwannchai W, Hu Y, Kandola B. The effect of graphene presence in flame retarded epoxy resin matrix on the mechanical and flammability properties of glass fiber-reinforced composites. Compos A Appl Sci Manuf. 2013;53:88–96.

    CAS  Google Scholar 

  27. 27.

    Wicklein B, Kocjan A, Salazar-Alvarez G, Carosio F, Camino G, Antonietti M, Bergström L. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide. Nat Nanotechnol. 2015;10:277–83.

    CAS  PubMed  Google Scholar 

  28. 28.

    Zhao MQ, Zhang Q, Huang JQ, Wei F. Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides-properties, synthesis, and applications. Adv Funct Mater. 2012;22(4):675–94.

    CAS  Google Scholar 

  29. 29.

    Yuan BH, Bao CL, Song L, Hong NN. Preparation of functionalized graphene oxide/polypropylene nanocomposite with significantly improved thermal stability and studies on the crystallization behavior and mechanical properties. Chem Eng J. 2014;237:411–20.

    CAS  Google Scholar 

  30. 30.

    Sang B, Li ZW, Li XH, Yu LG, Zhang ZJ. Graphene-based flame retardants: a review. J Mater Sci. 2016;51(18):8271–95.

    CAS  Google Scholar 

  31. 31.

    Chen XL, Jiang YF, Jiao CM. Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J Hazard Mater. 2014;266:114–21.

    CAS  PubMed  Google Scholar 

  32. 32.

    Zhang H, Zhang J, Yun RP, Jiang ZG, Liu HM, Yan DP. Nanohybrids of organo-modified layered double hydroxides and polyurethanes with enhanced mechanical, damping and UV absorption properties. Rsc Adv. 2016;6(41):34288–96.

    CAS  Google Scholar 

  33. 33.

    Zhang Y, Wang BB, Yuan BH, Yuan Y, Liew KM, Song L, Hu Y. Preparation of large size reduced graphene oxide wrapped ammonium polyphosphate and its enhancement on the mechanical and flame retardant properties of thermoplastic polyurethane. Ind Eng Chem Res. 2017;56:7468–77.

    CAS  Google Scholar 

  34. 34.

    Krishnamoorthy K, Veerapandian M, Yun K, Kim SJ. The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon. 2013;53:38–49.

    CAS  Google Scholar 

  35. 35.

    Xu WZ, Zhang BL, Xu BL, Li AJ. The flame retardancy and smoke suppression effect of heptaheptamolybdate modified reduced graphene oxide/layered double hydroxide hybrids on polyurethane elastomer. Compos A. 2016;91:30–40.

    CAS  Google Scholar 

  36. 36.

    Wang X, Zhou S, Xing WY, Yu B, Feng XM, Song L, Hu Y. Self-assembly of Ni–Fe layered double hydroxide/graphene hybrids for reducing fire hazard in epoxy composites. J Mater Chem A. 2013;1(13):4383–90.

    CAS  Google Scholar 

  37. 37.

    Ahmed NS, Menzel R, Wang YF, Garcia-Gallastegui A, Bawaked SM, Obaid AY, Basahel SN, Mokhtar M. Graphene-oxide-supported CuAl and CoAl layered double hydroxides as enhanced catalysts for carbon-carbon coupling via Ullmann reaction. J Solid State Chem. 2017;246:130–7.

    CAS  Google Scholar 

  38. 38.

    Hong NN, Song L, Wang BB, Stec AA, Hull TR, Zhan J, Hu Y. Co-precipitation synthesis of reduced graphene oxide/NiAl-layered double hydroxide hybrid and its application in flame retarding poly(methyl methacrylate). Mater Res Bull. 2014;49:657–64.

    CAS  Google Scholar 

  39. 39.

    Qian Y, Li SQ, Chen XL. Preparation of mesoporous silica-LDHs system and its coordinated flame-retardant effect on EVA. J Therm Anal Calorim. 2017;130(1):2055–67.

    CAS  Google Scholar 

  40. 40.

    Jiao CM, Wang HZ, Li SX, Chen XL. Fire hazard reduction of hollow glass microspheres in thermoplastic polyurethane composites. J Hazard Mater. 2017;332:176–84.

    CAS  PubMed  Google Scholar 

  41. 41.

    Dong YY, Gui Z, Hu Y, Wu Y, Jiang SH. The influence of titanate nanotube on the improved thermal properties and the smoke suppression in poly(methyl methacrylate). J Hazard Mater. 2012;209–210:34–9.

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the National Natural Science Foundation of China (No. 51572138), the Key R & D Project of Shandong Province (Nos. 2019GSF109001, 2019CSF109080), the Shandong Provincial Natural Science Foundation, China (No. ZR2018BB072), the Original Innovation Project of Qingdao City (No. 19-6-2-23-cg), the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering (Nos. 2018-K09 and 2018-K43), Key Laboratory of Coastal Environmental Processes and Ecological Remediation, YICCAS (No. 2018KFJJ02) and Opening Project of Shandong Ecochemical Engineering Collaborative Innovation Center (No. XTCXQN02).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Long Li or Yi Qian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, L., Jiang, K., Qian, Y. et al. Effect of organically intercalation modified layered double hydroxides-graphene oxide hybrids on flame retardancy of thermoplastic polyurethane nanocomposites. J Therm Anal Calorim 142, 723–733 (2020). https://doi.org/10.1007/s10973-020-09263-0

Download citation

Keywords

  • Thermoplastic polyurethane
  • Layered double hydroxides
  • Graphene oxide
  • Sodium dodecyl sulfate
  • Flame retardancy