A new correlation for predicting the thermal conductivity of liquid refrigerants


The material ability to conduct the heat transfer is called thermal conductivity which is defined by Fourier's equation. Thermodynamic data on environmentally acceptable refrigerants have maximum interest for industries to optimize and design equipment of refrigeration such as exchangers and heat compressors. Because source empirical findings are not applicable for all temperature ranges in industries, correlation approaches are usually preferred. In this research, a novel simple correlation has been developed to predict the thermal conductivity of liquid refrigerants using regression approaches. The variance analysis was applied to study the rationality of regression model. Around 15,874 experimental data of 27 refrigerants were examined to obtain the main effects between the independent parameters. Independent parameters are temperature, boiling and reduced temperatures. The calculations show that the accuracy of the proposed correlation using the average absolute relative deviation (AARD) and root mean square deviation has priority over the previous relations. The results indicated that the AARD of the proposed model is 1.1% which is 68% lower than of the most accurate previous model (Latini–Sotte).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


\(A\) :

Thermal conductivity value of the specific fluid/Wm1 K1

\(k_{{\text{C}}}\) :

Thermal conductivity/Wm1 K1

\(M\) :

Molecular weight/gr mol1

\(P_{{\text{C}}}\) :

Critical pressure/KPa

\(T\) :


\(T_{{{\text{br}}}}\) :

Boiling temperature/K

\(T_{{{\text{fus}}}}\) :

Fusion temperature/K

\(T_{{\text{r}}}\) :

Reduced temperature/K

\(\Phi\) :

Golden ratio

\(\lambda\) :

Thermal conductivity/Wm1 K1

\(\lambda_{{\text{b}}}\) :

Thermal conductivity at the normal boiling point/Wm1 K1

\(\omega\) :

Decentralized coefficient


Average absolute relative deviation/%


Root mean square deviation


  1. 1.

    Adelekan DS, Ohunakin OS, Gill J, Atayero A, Diarra CD, Asuzu EA. Experimental performance of a safe charge of LPG refrigerant enhanced with varying concentrations of TiO2 nano-lubricant in a domestic refrigerator. J Therm Anal Calorim. 2019;136:2439–48.

    CAS  Article  Google Scholar 

  2. 2.

    Roy R, Mandal BK. Thermo-economic analysis and multi-objective optimization of vapour cascade refrigeration system using different refrigerant combinations. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08710-x.

    Article  Google Scholar 

  3. 3.

    Gill J, Singh J, Ohunakin OS, Adelekhan DS. Energy analysis of a domestic refrigerator system with ANN using LPG/TiO2–lubricant as replacement for R134a. J Therm Anal Calorim. 2019;135:475–88.

    CAS  Article  Google Scholar 

  4. 4.

    Saleh S, Pirouzfar V, Alihosseini A. Performance analysis and development of a refrigeration cycle through various environmentally friendly refrigerants. J Therm Anal Calorim. 2019;136:1817–30.

    CAS  Article  Google Scholar 

  5. 5.

    Shayan M, Pirouzfar V, Sakhaeinia H. Technological and economical analysis of flare recovery methods, and comparison of different steam and power generation systems. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08429-9.

    Article  Google Scholar 

  6. 6.

    Zarei MJ, Ansari HR, Keshavarz P, Zerafat MM. Prediction of pool boiling heat transfer coefficient for various nano-refrigerants utilizing artificial neural networks. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08746-z.

    Article  Google Scholar 

  7. 7.

    Sun J, Zhu D, Yin Y, Li X. Experimental investigation of the heating performance of refrigerant injection heat pump with a single-cylinder inverter-driven rotary compressor. J Therm Anal Calorim. 2018;133:1579–88.

    CAS  Article  Google Scholar 

  8. 8.

    Hemmat Esfe M, Naderi A, Akbari M, Afrand M, Karimipour A. Evaluation of thermal conductivity of COOH-functionalized MWCNTs/water via temperature and solid volume fraction by using experimental data and ANN methods. J Therm Anal Calorim. 2015;121:1273–8.

    CAS  Article  Google Scholar 

  9. 9.

    Di Nicola G, Ciarrocchi E, Pierantozzi M, Stryjek R. A new equation for the thermal conductivity of organic compounds. J Therm Anal Calorim. 2014;116:135–40.

    Article  Google Scholar 

  10. 10.

    He MG, Liu ZG, Yin JM. New equation of state for transport properties: calculation for the thermal conductivity and the viscosity of halogenated hydrocarbon refrigerants. Fluid Phase Equilib. 2002;201:309–20.

    CAS  Article  Google Scholar 

  11. 11.

    Di Nicola G, Ciarrocchi E, Coccia G, Pierantozzi M. Correlations of thermal conductivity for liquid refrigerants at atmospheric pressure or near saturation. Int J Refrig. 2014;45:168–76.

    Article  Google Scholar 

  12. 12.

    Weber HF. The thermal conductivity of liquids. Rep Phys. 1886;22:116–24 (in German).

    Google Scholar 

  13. 13.

    Dick MF, Cready DW. The thermal conductivities of some organic liquids. Trans ASME. 1954;76:831–8.

    CAS  Google Scholar 

  14. 14.

    Bridgman PW. Thermal conductivity of liquids under pressure. Proc Am Acad Art Sci. 1923;59:141–69.

    CAS  Article  Google Scholar 

  15. 15.

    Sastri SRS, Rao KK. A new temperature-thermal conductivity relationship for predicting saturated liquid. Chem Eng J. 1999;47:161–9.

    Article  Google Scholar 

  16. 16.

    Vargaftik NB. Thermal conductivity of liquids. Izv Vses Teplotekhn Inst. 1949;8:6–11.

    Google Scholar 

  17. 17.

    Poling BE, Prausnitz JM, O’Connell JP. The properties of gases and liquids. 5thth ed. New York: McGraw-Hill; 2001.

    Google Scholar 

  18. 18.

    Gharagheizi F, Ilani-Kashkouli P, Sattari M, Mohammadi AH, Ramjugernath D, Richon D. Development of a quantitative structureeliquid thermal conductivity relationship for pure chemical compounds. Fluid Phase Equilib. 2013;355:52–80.

    CAS  Article  Google Scholar 

  19. 19.

    Haghbakhsh R, Raeissi S. A novel correlative approach for ionic liquid thermal conductivities. J Mol Liq. 2017;236:214–9.

    CAS  Article  Google Scholar 

  20. 20.

    Jarušková D, Kučerová A. Estimation of thermophysical parameters revisited from the point of view of nonlinear regression with random parameters. Int J Heat Mass Transf. 2017;106:135–41.

    Article  Google Scholar 

  21. 21.

    Huber ML, Laesecke A, Perkins RA. Model for the Viscosity and Thermal Conductivity of Refrigerants, Including a New Correlation for the Viscosity of R134a. Ind Eng Chem Res. 2003;42:3163–78.

    CAS  Article  Google Scholar 

  22. 22.

    Ely JF, Hanley HJM. Prediction of transport properties 1. Viscosity of fluids and mixtures. Ind Eng Chem Fundam. 1981;20:323–32.

    CAS  Article  Google Scholar 

  23. 23.

    Scheffy WY, Johnson EF. Thermal conductivities of liquids at high temperatures. J Chem Eng Data. 1961;6:245–9.

    CAS  Article  Google Scholar 

  24. 24.

    Latini G, Sotte M. Refrigerants of the methane, ethane and propane series: thermal conductivity calculation along the saturation line. Int J Air Cond. 2011;19:37–433.

    CAS  Article  Google Scholar 

  25. 25.

    Gharagheizi F, Ilani-Kashkouli P, Sattari M, Mohammadi AH, Ramjugernath D, Richon D. Development of a general model for determination of thermal conductivity of chemical compounds at atmospheric pressure. AIChE J. 2013;59:1702–8.

    CAS  Article  Google Scholar 

  26. 26.

    NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology. Gaithersburg MD. 2015; 20899 https://webbook.nist.gov

  27. 27.

    Sanjari E. A new simple method for accurate calculation of saturated vapour pressure. Thermochim Acta. 2013;560:12–6.

    CAS  Article  Google Scholar 

Download references


The first author wishes to express their gratitude to the Natural Science Foundation of China (No. 51465047), the Natural Science Foundation of Jiangxi, China (No. 20151BAB207011) and the Aeronautical Science Foundation of China (No. 2014ZD56009) for supporting the research as reported in this paper.

Author information



Corresponding author

Correspondence to Masoud Afrand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Akbari, M., Forouharmanesh, F. et al. A new correlation for predicting the thermal conductivity of liquid refrigerants. J Therm Anal Calorim 143, 795–800 (2021). https://doi.org/10.1007/s10973-019-09238-w

Download citation


  • Liquid refrigerant
  • Correlation
  • Thermal conductivity
  • Empirical method
  • Temperature