Thermogravimetric analysis and kinetics characteristics of typical grains

Abstract

We investigated the thermal decomposition behaviors of two typical grains, rice and corn, using a thermogravimetric analyzer at different heating rates. The pyrolysis process of rice and corn both can be divided into three stages, and the most possible pyrolysis mechanism of both rice and corn during devolatilization is a three-dimensional diffusion reaction, which can be represented by the Zhuravlev equation (G(α) = [(1 − α)(−1/3) − 1]2). Corn had a higher initial degradation temperature and end temperature as well as a higher mass loss in the second stage than rice. The average Ea of rice determined by Kissinger, FWO and Friedman method was 143.6 kJ mol−1, 161.6 kJ mol−1 and 148.7 kJ mol−1, respectively. The average Ea of corn determined by Kissinger, FWO and Friedman method was 166.1 kJ mol−1, 146.3 kJ mol−1 and 170.4 kJ mol−1, respectively. A lower Ea of rice than corn also indicates that rice is easier to be pyrolyzed. The predicted values using the kinetic parameters calculated show a good agreement with the experimental data at all the four heating rates. The results presented herein could provide guidance for storage of grains.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Xiao G, Yingli H, Li N, Yang D. Spatial autocorrelation analysis of monitoring data of heavy metals in rice in China. Food Control. 2018;89:32–7. https://doi.org/10.1016/j.foodcont.2018.01.032.

    CAS  Article  Google Scholar 

  2. 2.

    Yang H, Han X. Comparison of corn production, trade, consumption and storage among main producing countries: based on 1996/1997–2016/2017 production season. World Agric. 2017. https://doi.org/10.13856/j.cn11-1097/s.2017.06.005.

    Article  Google Scholar 

  3. 3.

    Wang Y, Zheng X. Modeling and experimental study of the effect of pressure on pyrolysis of wet wood. J Fire Sci. 2013;31:495–510. https://doi.org/10.1177/0734904113482104.

    Article  Google Scholar 

  4. 4.

    Yang H, Yan R, Chen H, Lee DH, Zheng C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86:1781–8. https://doi.org/10.1016/j.fuel.2006.12.013.

    CAS  Article  Google Scholar 

  5. 5.

    Liu W-J, Li W-W, Jiang H, Yu H-Q. Fates of chemical elements in biomass during its pyrolysis. Chem Rev. 2017;117:6367–98. https://doi.org/10.1021/acs.chemrev.6b00647.

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Wu H, Hanna MA, Jones DD. Thermogravimetric characterization of dairy manure as pyrolysis and combustion feedstocks. Waste Manag Res. 2012;30(10):1066–71. https://doi.org/10.1177/0734242X12452906.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Fang S, Yu Z, Ma X, Lin Y, Chen L, Liao Y. Analysis of catalytic pyrolysis of municipal solid waste and paper sludge using TG-FTIR, Py-GC/MS and DAEM (distributed activation energy model). Energy. 2018;143:517–32. https://doi.org/10.1016/j.energy.2017.11.038.

    CAS  Article  Google Scholar 

  8. 8.

    Correia LP, de Santana CP, da Silva KMA. Physical and chemical characteristics of Maytenus rigida in different particle sizes using SEM/EDS, TG/DTA and pyrolysis GC–MS. J Therm Anal Calorim. 2018;131:743–52. https://doi.org/10.1007/s10973-016-5999-0.

    CAS  Article  Google Scholar 

  9. 9.

    Zhu F, Yanfang X, Feng Q, Yang Q. Thermal kinetics study and flammability evaluation of polyimide fiber material. J Therm Anal Calorim. 2018;1131:2579–87. https://doi.org/10.1007/s10973-017-6752-z.

    CAS  Article  Google Scholar 

  10. 10.

    Rath J, Steiner G, Wolfinger MG. Tar cracking from fast pyrolysis of large beech wood particles. J Anal Appl Pyrolysis. 2002;62:83–92. https://doi.org/10.1016/S0165-2370(00)00215-1.

    CAS  Article  Google Scholar 

  11. 11.

    Branca C, Di Blasi C. A unified mechanism of the combustion reactions of lignocellulosic fuels. Thermochim Acta. 2013;565:58–64. https://doi.org/10.1016/j.tca.2013.04.014.

    CAS  Article  Google Scholar 

  12. 12.

    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6. https://doi.org/10.1246/bcsj.38.1881.

    CAS  Article  Google Scholar 

  13. 13.

    Friedman HL. New methods for evaluating kinetic parameters from thermal analysis data. J Polym Sci Polym Chem. 1969;7:41–6. https://doi.org/10.1002/pol.1969.110070109.

    CAS  Article  Google Scholar 

  14. 14.

    Garcia-Maraver A, Perez-Jimenez JA, Serrano-Bernardo F, Zamorano M. Determination and comparison of combustion kinetics parameters of agricultural biomass from olive trees. Renew Energy. 2015;83:897–904. https://doi.org/10.1016/j.renene.2015.05.049.

    Article  Google Scholar 

  15. 15.

    Mani T, Murugan P, Abedi J, Mahinpey N. Pyrolysis of wheat straw in a thermogravimetric analyzer: effect of particle size and heating rate on devolatilization and estimation of global kinetics. Chem Eng Res Des. 2010;88:952–8. https://doi.org/10.1016/j.cherd.2010.02.008.

    CAS  Article  Google Scholar 

  16. 16.

    Anca-Couce A, Berger A, Zobel N. How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel. 2014;123:230–40. https://doi.org/10.1016/j.fuel.2014.01.014.

    CAS  Article  Google Scholar 

  17. 17.

    Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76. https://doi.org/10.1016/S0040-6031(03)00144-8.

    CAS  Article  Google Scholar 

  18. 18.

    Maraden A, Stojan P, Matyas R, Zigmund J. Impact of initial grain temperature on the activation energy and the burning rate of cast double-base propellant. J Therm Anal Calorim. 2019;137:185–91. https://doi.org/10.1007/s10973-018-7927-y.

    CAS  Article  Google Scholar 

  19. 19.

    Magdziarz A, Wilk M, Straka R. Combustion process of torrefied wood biomass. J Therm Anal Calorim. 2017;127:1339–49. https://doi.org/10.1007/s10973-016-5731-0.

    CAS  Article  Google Scholar 

  20. 20.

    Slopiecka K. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy. 2012;97:491–7. https://doi.org/10.1016/j.apenergy.2011.12.056.

    CAS  Article  Google Scholar 

  21. 21.

    Dogan F, Ozdek N, Selçuki NA, Kaya I. The synthesis, characterization and effect of molar mass distribution on solid-state degradation kinetics of oligo(orcinol). J Therm Anal Calorim. 2019;138:163–73. https://doi.org/10.1007/s10973-019-08211-x.

    CAS  Article  Google Scholar 

  22. 22.

    Baas IO, Mulder J-WR, Offerhaus GJA, Vogelstein B, Hamilton SR. An evaluation of six antibodies for immunohistochemistry of mutant p53 gene product in archival colorectal neoplasms. J Pathol. 1994;172:5–12. https://doi.org/10.1002/path.1711720104.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Whitea JE, Catallo WJ, Legendrea BL. Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis. 2011;91:1–33. https://doi.org/10.1016/j.jaap.2011.01.004.

    CAS  Article  Google Scholar 

  24. 24.

    Kim Y-M. Analytical pyrolysis reaction characteristics of Porphyra tenera. Algal Res. 2018;32:60–9. https://doi.org/10.1016/j.algal.2018.03.003.

    Article  Google Scholar 

  25. 25.

    Anastasakis K, Ross A. Pyrolysis behaviour of the main carbohydrates of brown macro-algae. J. Jones Fuel. 2011;90:598–607. https://doi.org/10.1016/j.fuel.2010.09.023.

    CAS  Article  Google Scholar 

  26. 26.

    Agrawal A, Chakraborty S. A kinetic study of pyrolysis and combustion of microalgae Chlorella vulgaris using thermo-gravimetric analysis. Bioresour Technol. 2013;128:72–80. https://doi.org/10.1016/j.biortech.2012.10.043.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Ceylan S, Topçu Y. Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis. Bioresour Technol. 2014;156:182–8. https://doi.org/10.1016/j.biortech.2014.01.040.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Kim S-S, Agblevor FA. Pyrolysis characteristics and kinetics of chicken litter. Waste Manag. 2007;27:135–40. https://doi.org/10.1016/j.wasman.2006.01.012.

    Article  PubMed  Google Scholar 

  29. 29.

    Vamvuka D, Kakaras E, Kastanaki E, Grammelis P. Pyrolysis characteristics and kinetics of biomass residuals mixtures with lignite. Fuel. 2003;82:1949–60. https://doi.org/10.1016/S0016-2361(03)00153-4.

    CAS  Article  Google Scholar 

  30. 30.

    Xue J, Ceylan S, Goldfarb JL. Synergism among biomass building blocks? Evolved gas and kinetics analysis of starch and cellulose co-pyrolysis. Thermochim Acta. 2015;618:36–47. https://doi.org/10.1016/j.tca.2015.09.002.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support from National Key Research and Development Program of China (2017YFC0805900) and Fundamental Research Funds for the Central Universities (WK2320000041 and WK2320000043).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yuan Hu or Wenru Zeng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yao, C., Wang, X., Zhou, Y. et al. Thermogravimetric analysis and kinetics characteristics of typical grains. J Therm Anal Calorim 143, 647–659 (2021). https://doi.org/10.1007/s10973-019-09213-5

Download citation

Keywords

  • Rice
  • Corn
  • Pyrolysis
  • Kinetics
  • Thermogravimetric analysis