Exploration of the thermal decomposition of zinc oxalate by experimental and computational methods


Zinc oxalate dihydrate has been synthesized by precipitation method and characterized by FT-IR, XRD and SEM-EDAX. The kinetics of dehydration and decomposition were studied by non-isothermal DSC technique in the N2 atmosphere at different heating rates: 4, 6, 8 and 10 K min−1. The product of thermal decomposition, ZnO has been characterized by UV, TEM, SEM-EDAX and XRD and found that the particles are in nanometer range. The activation energy for thermal dehydration and decomposition was calculated by various isoconversional methods. Furthermore, structure and reactivity of zinc oxalate have also been investigated using B3LYP/631+g (d, p) level of theory with the help of Gaussian 09W software. The theoretical investigation indicates that most probably the compound decomposes to ZnO along with the evolution of CO2 and CO.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17


  1. 1.

    Brown ME, Galwey AK. Thermal decomposition of ionic solids. New York: Elsevier Science; 1999.

    Google Scholar 

  2. 2.

    Mohamed MA, Halawy SA, Salem MA. Non-isothermal decomposition of potassium ferrioxalate trihydrate. J Anal Appl Pyrolysis. 2000;55:55–67.

    CAS  Google Scholar 

  3. 3.

    Deb N. An investigation on the solid-state thermal decomposition of bimetallic oxalate and tartrate coordination precursors of lanthanum(III) and palladium(II) ions. J Anal Appl Pyrolysis. 2008;82:223–8.

    CAS  Google Scholar 

  4. 4.

    Lvov BV, Boris VL. The physical approach to the interpretation of the kinetics and mechanisms of thermal decomposition of solids: the state of the art. Thermochim Acta. 2001;373:97–124.

    CAS  Google Scholar 

  5. 5.

    Boldyrev VV. Thermal decomposition of silver oxalate. Thermochim Acta. 2002;388:63–90.

    CAS  Google Scholar 

  6. 6.

    Muraleedharan K, Kripa S. DSC kinetics of the thermal decomposition of copper(II) oxalate by isoconversional and maximum rate (peak) methods. J Therm Anal Calorim. 2014;115:1969–78.

    CAS  Google Scholar 

  7. 7.

    Donia AM. Synthesis, identification and thermal analysis of coprecipitates of silver-(cobalt, nickel, copper and zinc) oxalate. Polyhedron. 1997;16:3013–31.

    CAS  Google Scholar 

  8. 8.

    Limin G, Hiroyuki A, Norio T. Synthesis of mesoporous metal oxide by the thermal decomposition of oxalate precursor. Langmuir. 2013;29:4404–12.

    Google Scholar 

  9. 9.

    Charu A, Aditi S, Sanju S, Yeshwant N, Gollamudi R. Solid-state reaction of strontium oxalate with uranium oxalate application of TG. J Therm Anal Calorim. 2016;124:43–9.

    Google Scholar 

  10. 10.

    Charu A, Shalu C, Gollamudi R, Yeshwant PN. Application of thermogravimetric analysis in study of solid-state reaction between barium oxalate and uranyl oxalate. J Therm Anal Calorim. 2016;124:51–6.

    Google Scholar 

  11. 11.

    Fatemi NS, Dollimore D, Heal GR. Thermal decomposition of oxalates. Part 16. Thermal decomposition studies on cadmium oxalate. Thermochim Acta. 1982;54:167–80.

    CAS  Google Scholar 

  12. 12.

    Gülbanu KC, Halil C, Ramazan D. Thermal and kinetic analysis of uranium salts. Part III. Uranium(IV) oxalate hydrates. J Therm Anal Calorim. 2014;115:2007–20.

    Google Scholar 

  13. 13.

    Ahmad T, Ganguli AK, Ganguly A, Ahmed J, Wani IA, Khatoon S. Chemistry of reverse micelles: a versatile route to the synthesis of nanorods and nanoparticles. Mater Res Soc Symp Proc. 2009;1142:75–88.

    Google Scholar 

  14. 14.

    Kansal SK, Singh M, Sud D. Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. J Hazard Mater. 2007;141:581–90.

    CAS  PubMed  Google Scholar 

  15. 15.

    Zamora PP, Gouvêa CAK, Wypych F, Moraes SG, Durán N, Nagata N. Semiconductor-assisted photocatalytic degradation of reactive dyes in aqueous solution. Chemosphere. 2000;40:433–40.

    Google Scholar 

  16. 16.

    Muruganandham M, Chen IS, Wu JJ. Effect of temperature on the formation of macroporous ZnO bundles and its application in photocatalysis. J Hazard Mater. 2009;172:700–6.

    CAS  PubMed  Google Scholar 

  17. 17.

    Sakthivel S, Neppolian B, Shankar MV, Arabindoo B, Palanichamy M, Murugesan V. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mater Sol Cells. 2003;77:65–82.

    CAS  Google Scholar 

  18. 18.

    Fujita J, Nakamoto K, Kobayashi M. Infrared spectra of metallic complexes. III. The infrared spectra of metallic oxalates. J Phys Chem. 1957;61:1014–5.

    CAS  Google Scholar 

  19. 19.

    Jacob MU, Rerlmutter DD. Thermal decomposition of carbonates, carboxylates, oxalates, acetates, formates, and hydroxides. Thermochim Acta. 1981;49:207–18.

    Google Scholar 

  20. 20.

    Dollimore D. The influence of the environment on the thermal decomposition of oxysalts. J Therm Anal. 1977;11:185–200.

    CAS  Google Scholar 

  21. 21.

    Nikumbh AK, Athare AE, Pardeshi SK. Thermal and electrical properties of manganese (II) oxalate dihydrate and cadmium (II) oxalate monohydrate. Thermochim Acta. 1999;326:187–92.

    CAS  Google Scholar 

  22. 22.

    Majumdar R, Sarkar P, Ray U, Roy MM. Secondary catalytic reactions during thermal decomposition of oxalates of zinc, nickel and iron(II). Thermochim Acta. 1999;335:43–53.

    CAS  Google Scholar 

  23. 23.

    Małecka B, Drozdz-Cieśla E, Małecki A. Mechanism and kinetics of thermal decomposition of zinc oxalate. Thermochim Acta. 2004;423:13–8.

    Google Scholar 

  24. 24.

    Hu C, Mi J, Shang S, Shangguan J. The study of thermal decomposition kinetics of zinc oxide formation from zinc oxalate dihydrate. J Therm Anal Calorim. 2014;115:1119–25.

    CAS  Google Scholar 

  25. 25.

    Reshmi S, Vijayalakshmi KP, Thomas D, George BK, Nair CPR. Thermal decomposition of a diazido ester: pyrolysis GC-MS and DFT study. J Anal Appl Pyrolysis. 2013;104:603–8.

    CAS  Google Scholar 

  26. 26.

    Sarada K, Vijisha KR, Muraleedharan K. Exploration of the thermal decomposition of oxalates of copper and silver by experimental and computational methods. J Anal Appl Pyrolysis. 2016;120:207–14.

    CAS  Google Scholar 

  27. 27.

    Kolezyński A, Małecki A. Theoretical studies of thermal decomposition of anhydrous cadmium and silver oxalates: part II. Correlations between the electronic structure and the ways of thermal decomposition. J Therm Anal Calorim. 2009;96:167–73.

    Google Scholar 

  28. 28.

    Kolezyński A, Małecki A. First principles studies of thermal decomposition of anhydrous zinc oxalate. J Therm Anal Calorim. 2009;96:645–51.

    Google Scholar 

  29. 29.

    Koleżyński A, Małecki A. Theoretical approach to thermal decomposition process of chosen anhydrous oxalates. J Therm Anal Calorim. 2009;97:77–83.

    Google Scholar 

  30. 30.

    Kolezyński A, Małecki A. Theoretical analysis of electronic and structural properties of anhydrous calcium oxalate. J Therm Anal Calorim. 2010;99:947–55.

    Google Scholar 

  31. 31.

    Kolezyński A, Małecki A. Theoretical studies of electronic and crystal structure properties of anhydrous mercury oxalate. J Therm Anal Calorim. 2010;101:499–504.

    Google Scholar 

  32. 32.

    Koleżyński A, Handke B, Drożdż-Cieśla E. Crystal structure, electronic structure, and bonding properties of anhydrous nickel oxalate. J Therm Anal Calorim. 2013;113:319–28.

    Google Scholar 

  33. 33.

    Becke AD. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys. 1993;98:5648–52.

    CAS  Google Scholar 

  34. 34.

    Lee C, Yang W, Parr RG. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B. 1988;37:785–9.

    CAS  Google Scholar 

  35. 35.

    Patterson A. The Scherrer formula for X-ray particle size determination. Phys Rev. 1939;56:978.

    CAS  Google Scholar 

  36. 36.

    Zhigang J, Daping R, Lixin X, Rongsun Z. Preparation, characterization and photocatalytic activity of porous zinc oxide superstructure. Mater Sci Semicond Process. 2012;15:270–6.

    Google Scholar 

  37. 37.

    Velmurugan R, Swaminathan M. An efficient nanostructured ZnO for dye sensitized degradation of Reactive Red 120 dye under solar light. Sol Energy Mater Sol Cells. 2011;95:942–50.

    CAS  Google Scholar 

  38. 38.

    Nelsa A, Alex R, Unni C, Daizy P. Nanostructured ZnO with bio-capping for nanofluid and natural dye based solar cell applications. J Mater Sci Mater Electron. 2017;28:16527–39.

    Google Scholar 

  39. 39.

    Khawam A, Flanagan DR. Role of isoconversional methods in varying activation energies of solid-state kinetics: II. Nonisothermal kinetic studies. Thermochim Acta. 2005;436:101–12.

    CAS  Google Scholar 

  40. 40.

    Vyazovkin S. Computational aspects of kinetic analysis. Part C. The ICTAC kinetics projects-data, methods and results. Thermochim Acta. 2000;355:155–63.

    CAS  Google Scholar 

  41. 41.

    Starink MJ. The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods. Thermochim Acta. 2003;404:163–76.

    CAS  Google Scholar 

  42. 42.

    Sarada K, Muraleedharan K. Effect of addition of silver on the thermal decomposition kinetics of copper oxalate. J Therm Anal Calorim. 2016;123:643–51.

    CAS  Google Scholar 

  43. 43.

    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermo gravi-metric data. Polym Lett. 1966;4:323–8.

    CAS  Google Scholar 

  44. 44.

    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    CAS  Google Scholar 

  45. 45.

    Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    CAS  Google Scholar 

  46. 46.

    Wanjun T, Donghua C. New approximate formula for the generalized temperature integral. J Therm Anal Calorim. 2009;98:437–40.

    Google Scholar 

  47. 47.

    Jose John M, Muraleedharan K, Kannan MP, Ganga Devi T. Kinetic studies on the thermal decomposition of phosphate-doped sodium oxalate. J Therm Anal Calorim. 2013;111:137–44.

    CAS  Google Scholar 

Download references


The author K. Sabira expresses her sincere gratitude to Human Resource Development Group, Council of Scientific & Industrial Research (CSIR), India, for granting Research Fellowship in the form of CSIR-JRF. The author also acknowledges STIC, CUSAT for TEM analysis and CSIF, University of Calicut, for SEM-EDAX analysis.

Author information



Corresponding author

Correspondence to K. Muraleedharan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 828 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sabira, K., Muraleedharan, K. Exploration of the thermal decomposition of zinc oxalate by experimental and computational methods. J Therm Anal Calorim 142, 1315–1327 (2020). https://doi.org/10.1007/s10973-019-09169-6

Download citation


  • Zinc oxalate dihydrate
  • Thermal decomposition
  • Dehydration
  • Isoconversional methods