Thermal analysis of cesium hafnium chloride using DSC–TG under vacuum, nitrogen atmosphere, and in enclosed system

Abstract

This paper reports on the preparation of undoped cesium hafnium chloride (Cs2HfCl6) and study of its thermal properties. The Cs2HfCl6 is considered, due to its excellent scintillation properties, as a promising candidate for cost-effective radiation detectors with potential to replace traditional halide scintillators, e.g., NaI:Tl and CsI:Tl. The Cs2HfCl6 material was successfully synthesized from a cesium chloride and a hafnium chloride mixed together in stoichiometric ratio. The presence of only one crystalline phase of the Cs2HfCl6 in the material was confirmed by the X-ray diffraction analysis. The simultaneous non-isothermal differential scanning calorimetry and thermogravimetry (DSC–TG) of the synthesized material under nitrogen atmosphere, vacuum, and in enclosed system was performed. The Cs2HfCl6 decomposition and melting of CsCl–Cs2HfCl6 mixture under nitrogen and vacuum were observed. On the contrary, the DSC measurement of the cesium hafnium chloride in enclosed system showed only one endothermic peak related to the congruent melting point. Furthermore, the repeated DSC–TG measurements to investigate the materials’ stability in enclosed system were carried out as well.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Krämer KW, Dorenbos P, Güdel HU, van Eijk CWE. Development and characterization of highly efficient new cerium doped rare earth halide scintillator materials. J Mater Chem. 2006;16:2773–80.

    Article  Google Scholar 

  2. 2.

    Alekhin MS, de Haas JTM, Khodyuk IV, Krämer KW, Menge PR, Ouspenski V, et al. Improvement of γ-ray energy resolution of LaBr 3:Ce3+ scintillation detectors by Sr2+ and Ca2+ co-doping. Appl Phys Lett. 2013;102:161915.

    Article  Google Scholar 

  3. 3.

    Bessiere A, Dorenbos P, van Eijk CWE, Kramer KW, Gudel HU. New thermal neutron scintillators: Cs2LiYCl6:Ce3+ and Cs2LiYBr 6:Ce3+. IEEE Trans Nucl Sci. 2004;51:2970–2.

    CAS  Article  Google Scholar 

  4. 4.

    Wei H, Stand L, Zhuravleva M, Meng F, Martin V, Melcher CL. Two new cerium-doped mixed-anion elpasolite scintillators: Cs2NaYBr 3I3 and Cs2NaLaBr3I3. Opt Mater. 2014;38:154–60.

    CAS  Article  Google Scholar 

  5. 5.

    Cherepy NJ, Hull G, Drobshoff AD, Payne SA, van Loef E, Wilson CM, et al. Strontium and barium iodide high light yield scintillators. Appl Phys Lett. 2008;92:083508.

    Article  Google Scholar 

  6. 6.

    Wu Y, Li Q, Chakoumakos BC, Zhuravleva M, Lindsey AC, Johnson JA, et al. Quaternary iodide K(Ca, Sr)I3:Eu2+ single-crystal scintillators for radiation detection: crystal structure, electronic structure, and optical and scintillation properties. Adv Opt Mater. 2016;4:1518–32.

    CAS  Article  Google Scholar 

  7. 7.

    Burger A, Rowe E, Groza M, Morales Figueroa K, Cherepy NJ, Beck PR, et al. Cesium hafnium chloride: a high light yield, non-hygroscopic cubic crystal scintillator for gamma spectroscopy. Appl Phys Lett. 2015;107:143505.

    Article  Google Scholar 

  8. 8.

    Kang B, Biswas K. Carrier self-trapping and luminescence in intrinsically activated scintillator: cesium hafnium chloride (Cs2HfCl6). J Phys Chem C. 2016;120:12187–95.

    CAS  Article  Google Scholar 

  9. 9.

    Král R, Babin V, Mihóková E, Buryi M, Laguta VV, Nitsch K, et al. Luminescence and charge trapping in Cs2HfCl6 single crystals: optical and magnetic resonance spectroscopy study. J Phys Chem C. 2017;121:12375–82.

    Article  Google Scholar 

  10. 10.

    Cardenas C, Burger A, DiVacri ML, Goodwin B, Groza M, Laubenstein M, et al. Internal contamination of the Cs2HfCl6 crystal scintillator. Nucl Instrum Methods Phys Res Sect Accel Spectrom Detect Assoc Equip. 2017;872:23–7.

    CAS  Article  Google Scholar 

  11. 11.

    Cardenas C, Burger A, Goodwin B, Groza M, Laubenstein M, Nagorny S, et al. Pulse-shape discrimination with Cs2HfCl6 crystal scintillator. Nucl Instrum Methods Phys Res Sect Accel Spectrom Detect Assoc Equip. 2017;869:63–7.

    CAS  Article  Google Scholar 

  12. 12.

    Lam S, Guguschev C, Burger A, Hackett M, Motakef S. Crystal growth and scintillation performance of Cs2HfCl6 and Cs2HfCl4Br2. J Cryst Growth. 2018;483:121–4.

    CAS  Article  Google Scholar 

  13. 13.

    Barraud E, Bégin-Colin S, Le Caër G, Villieras F, Barres O. Thermal decomposition of HfCl4 as a function of its hydration state. J Solid State Chem. 2006;179:1842–51.

    CAS  Article  Google Scholar 

  14. 14.

    Asvestas DA, Pint P, Flengas SN. Some thermodynamic properties of the solutions of ZrCl4 and HfCl4 in CsCl melts. Can J Chem. 1977;55:1154–66.

    CAS  Article  Google Scholar 

  15. 15.

    Maniv S. Crystal data for Cs2HfCl6. J Appl Crystallogr. 1976;9(3):245.

    Article  Google Scholar 

  16. 16.

    Maniv S, Low W, Gabay A. EPR spectrum of W5+ in single crystals of Cs2ZrCl6 and Cs2HfCl6. J Phys Chem Solids. 1971;32:815–7.

    CAS  Article  Google Scholar 

  17. 17.

    Kipouros GJ, Flengas SN. Equilibrium decomposition pressures of the compounds Cs2ZrCl6 and Cs2HfCl6 and X-ray identification of Na2HfCl6, K2HfCl6, and Cs2HfCl6. Can J Chem. 1983;61:2183–8.

    CAS  Article  Google Scholar 

  18. 18.

    Drummen PJH, Donker H, Smit WMA, Blasse G. Jahn-Teller distortion in the excited state of tellurium(IV) in Cs2MCl6 (M = Zr, Sn). Chem Phys Lett. 1988;144:460–2.

    CAS  Article  Google Scholar 

  19. 19.

    Ackerman JF. Preparation and luminescence of some [K2PtCl6] materials. Mater Res Bull. 1984;19:783–91.

    CAS  Article  Google Scholar 

  20. 20.

    Morozov IS, Sun IC. Izucheniye diagramm sostoyaniya sistem ZrCl4-KCl, ZrCl4-CsCl, HfCl4-NaCl, HfCl4-KCl, HfCl4-CsCl. Zhur Neorg Khim. 1959;4:678–83.

    CAS  Google Scholar 

  21. 21.

    Nitsch K, Cihlář A, Málková Z, Rodová M, Vaněček M. The purification and preparation of high-purity PbCl2 and ternary alkali lead chloride single crystals. J Cryst Growth. 1993;131:612–5.

    CAS  Article  Google Scholar 

  22. 22.

    Král R, Nitsch K, Babin V, Šulc J, Jelínková H, Yokota Y, et al. Growth and optical properties of RE-doped ternary rubidium lead chloride single crystals. Opt Mater. 2013;36:214–20.

    Article  Google Scholar 

  23. 23.

    Stand L, Zhuravleva M, Chakoumakos B, Wei H, Johnson J, Martin V, et al. Characterization of mixed halide scintillators: CsSrBrI2:Eu, CsCaBrI2:Eu and CsSrClBr2:Eu. J Lumin. 2019;207:70–7.

    CAS  Article  Google Scholar 

  24. 24.

    Wei H, Zhuravleva M, Yang K, Blalock B, Melcher CL. Effect of Ba substitution in CsSrI3:Eu2+. J Cryst Growth. 2013;384:27–32.

    CAS  Article  Google Scholar 

  25. 25.

    Nitsch K, Cihlář A, Dušek M, Hamplová V, Nikl M, Rodová M, et al. Growth and characterization of crystals of incongruently melting ternary alkali lead chlorides. Phys Status Solidi A. 1993;135:565–71.

    CAS  Article  Google Scholar 

  26. 26.

    Loyd M, Lindsey A, Stand L, Zhuravleva M, Melcher CL, Koschan M. Tuning the structure of CsCaI3: Eu via substitution of bromine for iodine. Opt Mater. 2017;68:47–52.

    CAS  Article  Google Scholar 

  27. 27.

    Gong P, Luo S, Huang Q, Yang Y, Jiang X, Liang F, et al. An alkaline tin(II) halide compound Na3Sn2F6Cl: synthesis, structure, and characterization. J Solid State Chem. 2017;248:104–8.

    CAS  Article  Google Scholar 

  28. 28.

    Kipouros GJ, Flengas SN. Equilibrium decomposition pressures of the compounds K2ZrCl6 and K2HfCl6. Can J Chem. 1978;56:1549–54.

    CAS  Article  Google Scholar 

  29. 29.

    Kipouros GJ, Flengas SN. Equilibrium decomposition pressures of the compounds Na2ZrCl6 and Na2HfCl6. Can J Chem. 1981;59:990–5.

    CAS  Article  Google Scholar 

  30. 30.

    Lister RL, Flengas SN. On the relationship between equilibrium pressures and the phase diagram of a reactive system: the system: NaCl–Na2ZrCl6, KCl–K2ZrCl6, NaCl–KCl–ZrCl4. Can J Chem. 1965;43:2947–69.

    CAS  Article  Google Scholar 

  31. 31.

    Galloni ΕΕ, Benyacar ΜRD, Abeledo ΜJD. Thermal behavior of potassium bromostannate. Z Für Krist Cryst Mater. 1962;117(8):470–2.

    CAS  Google Scholar 

  32. 32.

    Lébl M, Trnka J. Entfernung von sauerstoffhaltigen Anionen aus Alkalihalogeniden. Z Für Phys. 1965;186:128–36.

    Article  Google Scholar 

  33. 33.

    Nitsch K, Dušek M, Nikl M, Polák K, Rodová M. Ternary alkali lead chlorides: crystal growth, crystal structure, absorption and emission properties. Prog Cryst Growth Charact Mater. 1995;30:1–22.

    CAS  Article  Google Scholar 

  34. 34.

    Bloom H, Hastie JW. Transpiration vapor pressure measurements for the molten salt systems lead chloride + cesium chloride and cadmium chloride + cesium chloride. J Phys Chem. 1968;72:2361–5.

    CAS  Article  Google Scholar 

  35. 35.

    Secco EA, Secco RA. Heats of solution/substitution of Tl+, Rb+, K+, Br, I in crystalline CsCl from heats of solid phase transition by differential scanning calorimetry. J Phys Chem Solids. 2002;63:1669–75.

    CAS  Article  Google Scholar 

  36. 36.

    Natarajan M, Rao KJ, Rao CNR. Pm3m–Fm3m transformations of alkali halides Solid solutions of CsCl with KCl, CsBr, SrCl2. Trans Faraday Soc. 1970;66:2497.

    CAS  Article  Google Scholar 

  37. 37.

    Barin I, Knacke O, Kubaschewski O. Thermochemical properties of inorganic substances. Berlin: Springer; 1977.

    Book  Google Scholar 

  38. 38.

    Rossini FD, Wagman DD, Evans WH, Levine S, Jaffe I. Selected values of chemical thermodynamic properties. National Bureau of Standards circular, 500. Washington, D.C.: U.S. Govt. Print. Off.; 1952.

  39. 39.

    Buryi M, Král R, Babin V, Páterek J, Vaněček V, Veverka P, et al. Trapping and recombination centers in cesium hafnium chloride single crystals: EPR and TSL study. J Phys Chem C. 2019;123:19402–11.

    CAS  Article  Google Scholar 

  40. 40.

    Rodová M, Cihlář A, Málková Z, Nitsch K. New differential thermal analysis study of lead halides. Chem Phys Lett. 1997;268:455–60.

    Article  Google Scholar 

  41. 41.

    Nitsch K, Cihlář A, Rodová M. Molten state and supercooling of lead halides. J Cryst Growth. 2004;264:492–8.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was performed in the framework of the Czech Science Foundation Project No. 18-17555Y and partial support by Operational Programme Research, Development and Education financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (Project No. SOLID21 CZ.02.1.01/0.0/0.0/16_019/0000760). The authors would like to thank Mr. A. Cihlář for quartz ampule preparation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. Král.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Král, R., Zemenová, P., Vaněček, V. et al. Thermal analysis of cesium hafnium chloride using DSC–TG under vacuum, nitrogen atmosphere, and in enclosed system. J Therm Anal Calorim 141, 1101–1107 (2020). https://doi.org/10.1007/s10973-019-09087-7

Download citation

Keywords

  • Cesium hafnium chloride
  • DSC–TG
  • Thermal stability
  • Scintillator