Microcalorimetric evaluation of the effects of three anthraquinone derivatives from Chinese Rhubarb and the synergistic effect of the mixture on Staphylococcus aureus

Abstract

In this study, a noninvasive and nondestructive microcalorimetric method was used to investigate the antimicrobial activity of three anthraquinone derivatives (emodin, aloe-emodin and physcion) from Chinese Rhubarb. Additionally, we observed a synergistic antibacterial effect of a mixture (emodin + aloe-emodin) on Staphylococcus aureus. Antibacterial effects were further evaluated through principle component analysis and the half-inhibitory concentration (IC50) according to the influence of the anthraquinone derivatives on eight quantitative thermokinetic parameters, which were measured by isothermal microcalorimetry and obtained from metabolic power–time curves of Staphylococcus aureus growth at 37 °C. The inhibitory actions of the anthraquinone derivatives varied at different concentrations. The antibacterial effect of the derivatives on S. aureus was as follows: emodin + aloe-emodin (E + AE) > emodin (E) > aloe-emodin (AE) > physcion. Based on these results, the combined effect of emodin and aloe-emodin was stronger than that of each anthraquinone derivative alone. The combination of emodin and aloe-emodin is a promising antibacterial agent, providing a novel avenue for antibacterial materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28:603–61.

    CAS  Article  Google Scholar 

  2. 2.

    Rd AF, Torres VJ. The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiol Mol Biol Rev Mmbr. 2014;78:199–230.

    Article  Google Scholar 

  3. 3.

    Kong C, Neoh HM, Nathan S. Targeting staphylococcus aureus toxins: a potential form of anti-virulence therapy. Toxins. 2016. https://doi.org/10.3390/toxins8030072.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Kong WJ, Xing XY, Xiao XH, Zhao YL, Wei JH, Wang JB, et al. Effect of berberine on Escherichia coli, Bacillus subtilis, and their mixtures as determined by isothermal microcalorimetry. Appl Microbiol Biotechnol. 2012;96:503–10.

    CAS  Article  Google Scholar 

  5. 5.

    Liu J, Wu F, Chen C. Design and synthesis of aloe-emodin derivatives as potent anti-tyrosinase, antibacterial and anti-inflammatory agents. Bioorg Med Chem Lett. 2015;25:5142–6.

    CAS  Article  Google Scholar 

  6. 6.

    Zhu T, Zhang W, Feng SJ, Yu HP. Emodin suppresses LPS-induced inflammation in RAW264.7 cells through a PPARγ-dependent pathway. Int Immunopharmacol. 2016;34:16–24.

    CAS  Article  Google Scholar 

  7. 7.

    Shrimali D, Shanmugam MK, Kumar AP, Zhang J, Tan BK, Ahn KS, et al. Targeted abrogation of diverse signal transduction cascades by emodin for the treatment of inflammatory disorders and cancer. Cancer Lett. 2013;341:139–49.

    CAS  Article  Google Scholar 

  8. 8.

    Xiong Y, Ren L, Wang Z, Hu Z, Zhou Y. Anti-proliferative effect of physcion on human gastric cell line via inducing ROS-dependent apoptosis. Cell Biochem Biophys. 2015. https://doi.org/10.1007/s12013-015-0674-9.

    Article  PubMed  Google Scholar 

  9. 9.

    Acevedo-Duncan M, Russell C, Patel S, Patel R. Aloe–emodin modulates PKC isozymes, inhibits proliferation, and induces apoptosis in U-373MG glioma cells. Int Immunopharmacol. 2004;4:1775–84.

    CAS  Article  Google Scholar 

  10. 10.

    Pang M, Yang Z, Zhang X, Liu Z, Fan J, Zhang H. Physcion, a naturally occurring anthraquinone derivative, induces apoptosis and autophagy in human nasopharyngeal carcinoma. Acta Pharmacol Sin. 2016;37:1623–40.

    CAS  Article  Google Scholar 

  11. 11.

    Hu C, Dong T, Li R, Lu J, Wei X, Liu P. Emodin inhibits epithelial to mesenchymal transition in epithelial ovarian cancer cells by regulation of GSK-3β/β-catenin/ZEB1 signaling pathway. Oncol Rep. 2016;35:2027–34.

    CAS  Article  Google Scholar 

  12. 12.

    Zi-Qing H, Huang HQ, Tan HM, Liu PQ, Zhao LZ, Chen SR, et al. Emodin inhibits dietary induced atherosclerosis by antioxidation and regulation of the sphingomyelin pathway in rabbits. Chin Med J. 2006;119(10):868–70.

    Article  Google Scholar 

  13. 13.

    Li H, Wang X, Liu Y, Pan D, Wang Y, Yang N, et al. Hepatoprotection and hepatotoxicity of Heshouwu, a Chinese medicinal herb: context of the paradoxical effect. Food Chem Toxicol. 2016;108:407–18.

    Article  Google Scholar 

  14. 14.

    Liu H, Gu L, Tu Y, Hu H, Huang Y, Sun W. Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro by activating autophagy. Acta Pharmacol Sin. 2016;37:235–45.

    Article  Google Scholar 

  15. 15.

    Basu S, Ghosh A, Hazra B. Evaluation of the antibacterial activity of Ventilago madraspatana Gaertn., Rubia cordifolia Linn. and Lantana camara Linn.: isolation of emodin and physcion as active antibacterial agents. Phytother Res. 2005;19:888–94.

    CAS  Article  Google Scholar 

  16. 16.

    Siri M, Ruocco MJF, Achilli E, Pizzuto M, Delgado JF, Ruysschaert JM, et al. Effect of structure in ionised albumin based nanoparticle: characterisation, Emodin interaction, and in vitro cytotoxicity. Mater Sci Eng C Mater Biol Appl. 2019. https://doi.org/10.1016/j.msec.2019.109813.

    Article  PubMed  Google Scholar 

  17. 17.

    Yu Y, Liu H, Yang D, He F, Yuan Y, Guo J, et al. Aloe-emodin attenuates myocardial infarction and apoptosis via up-regulating miR-133 expression. Pharmacol Res. 2019. https://doi.org/10.1016/j.phrs.2019.104315.

    Article  PubMed  Google Scholar 

  18. 18.

    Pan X, Wang C, Li Y, Zhu L, Zhang T. Protective autophagy induced by physcion suppresses hepatocellular carcinoma cell metastasis by inactivating the JAK2/STAT3 Axis. Life Sci. 2018;214:124–35.

    CAS  Article  Google Scholar 

  19. 19.

    Meng X, Zhou X, Wang T, Li F, Li H, Li J, et al. Microcalorimetric study on the activation effects of Salviae miltiorrhizae combined with Radix puerariae on mice splenic lymphocytes. J Therm Anal Calorim. 2019;137:841–8.

    CAS  Article  Google Scholar 

  20. 20.

    Wang T, Zhou X, Zou W, Zhang P, Wang J, Li H, et al. Synergistic effects of Ginseng C. A. Mey and Astragalus membranaceus (Fisch.) Bunge on activating mice splenic lymphocytes detected by microcalorimetry and the underlying mechanisms predicted by in silico network analysis. J Therm Anal Calorim. 2018;132:1933–42.

    CAS  Article  Google Scholar 

  21. 21.

    Yan D, Li J, Xiong Y, Zhang C, Luo J, Han Y, Wang R, Jin C, Qian H, Li J, Qiu L, Peng C, Lin Y, Song X, Xiao X. Promotion of quality standard of herbal medicine by constituent removing and adding. Sci Rep. 2014. https://doi.org/10.1038/srep03668.

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Tafin UF, Clauss M, Meis JF, Trampuz A, Hauser PM, Bille J. Isothermal microcalorimetry: a novel method for real-time determination of antifungal susceptibility of Aspergillus species. Clin Microbiol Infect. 2012;18:241–5.

    Article  Google Scholar 

  23. 23.

    von Ah U, Wirz D, Daniels AU. Isothermal micro calorimetry—a new method for MIC determinations: results for 12 antibiotics and reference strains of E. coli and S. aureus. BMC Microbiol. 2009. https://doi.org/10.1186/1471-2180-9-106.

    Article  Google Scholar 

  24. 24.

    Kong W, Wang J, Xing X, Xiao X, Zhao Y, Zang Q, et al. Antifungal evaluation of cholic acid and its derivatives on Candida albicans by microcalorimetry and chemometrics. Anal Chim Acta. 2011;689:250–6.

    CAS  Article  Google Scholar 

  25. 25.

    Chihara T, Shimpo K, Beppu H, Yamamoto N, Kaneko T, Wakamatsu K, et al. Effects of aloe-emodin and emodin on proliferation of the MKN45 human gastric cancer cell line. Asian Pac J Cancer Prev APJCP. 2015;16:3887–91.

    Article  Google Scholar 

  26. 26.

    Ding Z, Xu F, Tang J, Li G, Jiang P, Tang Z, et al. Physcion 8-O-β-glucopyranoside prevents hypoxia-induced epithelial-mesenchymal transition in colorectal cancer HCT116 cells by modulating EMMPRIN. Neoplasma. 2016;63:351–61.

    CAS  Article  Google Scholar 

  27. 27.

    Kong WJ, Wang JB, Zang QC, Jin C, Wang ZW, Xing XY, et al. A novel “target constituent knock-out” strategy coupled with TLC, UPLC–ELSD and microcalorimetry for preliminary screening of antibacterial constituents in Calculus bovis. J Chromatogr B. 2011;879:3565–73.

    CAS  Article  Google Scholar 

  28. 28.

    Wadsö I. Isothermal microcalorimetry in applied biology. Thermochim Acta. 2002;394:305–11.

    Article  Google Scholar 

  29. 29.

    Kong W, Wang J, Xiao X, Chen S, Yang M. Evaluation of antibacterial effect and mode of Coptidis rhizoma by microcalorimetry coupled with chemometric techniques. Analyst. 2012;137:216–22.

    CAS  Article  Google Scholar 

  30. 30.

    Ma Z-j, Zhang C-e, Wang R-l, Zang Q-c, Yu X-h, Wang J-B, et al. Microcalorimetry combined with chemometics for antibacterial evaluation of Sophora alopecuroides on Staphylococcus aureus. J Therm Anal Calorim. 2018;134:1883–91.

    CAS  Article  Google Scholar 

  31. 31.

    Yi ZB, Yan Y, Liang YZ, Bao Z. Evaluation of the antimicrobial mode of berberine by LC/ESI-MS combined with principal component analysis. J Pharm Biomed Anal. 2007;44:301–4.

    CAS  Article  Google Scholar 

  32. 32.

    Yi LZ, Yuan DL, Liang YZ, Xie PS, Zhao Y. Quality control and discrimination of pericarpium citri reticulatae and pericarpium citri reticulatae viride based on high-performance liquid chromatographic fingerprints and multivariate statistical analysis. Anal Chim Acta. 2007;588:207–15.

    CAS  Article  Google Scholar 

  33. 33.

    Chen Y, Zhu SB, Xie MY, Nie SP, Liu W, Li C, et al. Quality control and original discrimination of Ganoderma lucidum based on high-performance liquid chromatographic fingerprints and combined chemometrics methods. Anal Chim Acta. 2008;623:146–56.

    CAS  Article  Google Scholar 

  34. 34.

    Kong WJ, Wang JB, Jin C, Zhao YL, Dai CM, Xiao XH, et al. Effect of emodin on Candida albicans growth investigated by microcalorimetry combined with chemometric analysis. Appl Microbiol Biotechnol. 2009;83:1183–90.

    CAS  Article  Google Scholar 

  35. 35.

    Fan DL, Xiao XH, Ma XJ. Calorimetric study of the effect of protoberberine alkaloids in Coptis chinensis Franch on Staphylococcus aureus growth. Thermochim Acta. 2008;480:49–52.

    CAS  Article  Google Scholar 

  36. 36.

    Kong W, Zhao Y, Shan L, Xiao X, Guo W. Thermochemical studies on the quantity-antibacterial effect relationship of four organic acids from Radix Isatidis on Escherichia coli growth. Biol Pharmaceut Bull. 2008;31:1301–5.

    CAS  Article  Google Scholar 

  37. 37.

    Brown AF, Murphy AG, Lalor SJ, Leech JM, O’Keeffe KM, Aogáin MM, et al. Memory Th1 cells are protective in invasive Staphylococcus aureus infection. PLoS Pathog. 2015. https://doi.org/10.1371/journal.ppat.1005226.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Schmidt T, Kock MM, Ehlers MM. Molecular characterization of staphylococcus aureus isolated from bovine mastitis and close human contacts in south african dairy herds: genetic diversity and inter-species host transmission. Front Microbiol. 2017. https://doi.org/10.3389/fmicb.2017.00511.

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Bröker BM, Daniel M, Vincent P. The T cell response to Staphylococcus aureus. Pathogens. 2016. https://doi.org/10.3390/pathogens5010031.

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Wang Z, Xue R, Cui J, Wang J, Fan W, Zhang H, et al. Antibacterial activity of a polysaccharide produced from Chaetomium globosum CGMCC 6882. Int J Biol Macromol. 2019;125:376–82.

    CAS  Article  Google Scholar 

  41. 41.

    Li X, Jiang J-H, Gu H-W, Wei D-L, Li C-H, Li X, et al. Synthesis and biothermokinetic study of a new Schiff base and its bismuth(III) complex on the growth metabolism of S. pombe and H. pylori cell lines. J Therm Anal Calorim. 2018;132:1913–22.

    CAS  Article  Google Scholar 

  42. 42.

    Wei Y, Xie Q, Dong W, Ito Y. Separation of epigallocatechin and flavonoids from Hypericum perforatum L. by high-speed counter-current chromatography and preparative high-performance liquid chromatography. J Chromatogr A. 2009;1216:4313–8.

    CAS  Article  Google Scholar 

  43. 43.

    Guo YX, Zhou LL, Li T, Wang LH. Preparative separation of lithospermic acid B from Salvia miltiorrhiza by polyamide resin and preparative high-performance liquid chromatography. J Chromatogr A. 2011;1218:4606–11.

    CAS  Article  Google Scholar 

  44. 44.

    Huang XY, Fu JF, Di DL. Preparative isolation and purification of steviol glycosides from Stevia rebaudiana Bertoni using high-speed counter-current chromatography. Sep Purif Technol. 2010;71:220–4.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was supported by Research Project of Liaoning Provincial Department of Education (No. JYTFW201915). Xiangka Hu acknowledges their team for their help.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chunmei Dai.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Ma, Y., Liu, Z. et al. Microcalorimetric evaluation of the effects of three anthraquinone derivatives from Chinese Rhubarb and the synergistic effect of the mixture on Staphylococcus aureus. J Therm Anal Calorim 141, 739–749 (2020). https://doi.org/10.1007/s10973-019-09082-y

Download citation

Keywords

  • Emodin
  • Aloe-emodin
  • Physcion
  • Antibacterial
  • Synergistic
  • S. aureus