Study of pre-formulation and development of solid lipid nanoparticles containing perillyl alcohol


The aim of this work was to study the physicochemical characterization of lipid matrices composed of cetyl palmitate (CP)/perillyl alcohol (PA) and develop preliminary studies of SLN for potential application in cancer treatment. The pre-formulation was submitted to recrystallization process (heating–cooling) in a concentration of CP/AP (F1 1:0; F2 1:9; F3 1:3; and F4 1:1). The characterization showed TG presents a single stage of thermal decomposition for AP, F1, F2 and F3 and two stages for F4. DSC decrease of the onset temperature of CP before and after thermal decomposition in all samples indicates a reduction in crystallinity, and WAXD data confirmed DSC results, showing a reduction in the intensity of main diffraction peaks of the lipid mixtures and a presence of the amorphous portion in 2θ angles of 21.51° and 23.62°. Results showed the binary mixtures presented a amorphous portion facilitates AP incorporation in SLN satisfactory size, polydispersity index, zeta potential and morphology was obtained.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Chen T, Da Fonseca C, Schönthal A. Perillyl alcohol and its drug-conjugated derivatives as potential novel methods of treating brain metastases. Int J Mol Sci. 2016;17(9):1463.

    PubMed Central  Google Scholar 

  2. 2.

    Andrade LN, Amaral RG, Dória GAA, Fonseca CS, da Silva TKM, Albuquerque Júnior RLC, et al. In vivo anti-tumor activity and toxicological evaluations of perillaldehyde 8,9-epoxide, a derivative of perillyl alcohol. Int J Mol Sci. 2016;17(1):32.

    CAS  PubMed Central  Google Scholar 

  3. 3.

    Kennedy D, Okello E, Chazot P, Howes MJ, Ohiomokhare S, Jackson P, et al. Volatile terpenes and brain function: investigation of the cognitive and mood effects of mentha × piperita l. Essential oil with in vitro properties relevant to central nervous system function. Nutrients. 2018.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Marchese A, Arciola CR, Barbieri R, Silva AS, Nabavi SF, Tsetegho Sokeng AJ, et al. Update on monoterpenes as antimicrobial agents: a particular focus on p-cymene. Materials (Basel Switz). 2017.

    Google Scholar 

  5. 5.

    Lin C-H, Chen C-H, Lin Z-C, Fang J-Y. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal. 2017;25(2):219–34.

    CAS  PubMed  Google Scholar 

  6. 6.

    Rigon RB, Gonçalez ML, Severino P, Alves DA, Santana MH, Souto EB, et al. Solid lipid nanoparticles optimized by 22 factorial design for skin administration: cytotoxicity in NIH3T3 fibroblasts. Colloids Surf B. 2018;171:501–5.

    CAS  Google Scholar 

  7. 7.

    de M Barbosa R, Ribeiro L, Casadei B, da Silva C, Queiróz V, Duran N, et al. Solid lipid nanoparticles for dibucaine sustained release. Pharmaceutics. 2018;10(4):231.

    CAS  PubMed Central  Google Scholar 

  8. 8.

    Silveira EF, Rannier L, Nalone L, da Silva CF, Chaud MV, Barbosa RDM, et al. Loading of 5-aminosalicylic in solid lipid microparticles (SLM). Solubility screening of lipid excipients and physicochemical characterization. J Therm Anal Calorim. 2019.

    Google Scholar 

  9. 9.

    Dantas IL, Bastos KTS, Machado M, Galvão JG, Lima AD, Gonsalves JKMC, et al. Influence of stearic acid and beeswax as solid lipid matrix of lipid nanoparticles containing tacrolimus. J Therm Anal Calorim. 2018;132(3):1557–66.

    CAS  Google Scholar 

  10. 10.

    Galvao JG, Trindade GG, Santos AJ, Santos RL, Chaves Filho AB, Lira AAM, et al. Effect of Ouratea sp. butter in the crystallinity of solid lipids used in nanostructured lipid carriers (NLCs). J Therm Anal Calorim. 2016;123(2):941–8.

    CAS  Google Scholar 

  11. 11.

    Teixeira FV, Alves GL, Ferreira MH, Taveira SF, da Cunha-Filho MSS, Marreto RN, et al. Preformulation studies to guide the development of raloxifene lipid-based delivery systems. J Therm Anal Calorim. 2018;132(1):365–71.

    CAS  Google Scholar 

  12. 12.

    Islan GA, Tornello PC, Abraham GA, Duran N, Castro GR. Smart lipid nanoparticles containing levofloxacin and DNase for lung delivery. Design and characterization. Colloids Surf B. 2016;143:168–76.

    CAS  Google Scholar 

  13. 13.

    Severino P, Silveira EF, Loureiro K, Chaud MV, Antonini D, Lancellotti M, et al. Antimicrobial activity of polymyxin-loaded solid lipid nanoparticles (PLX-SLN): characterization of physicochemical properties and in vitro efficacy. Eur J Pharm Sci. 2017;106:177–84.

    CAS  PubMed  Google Scholar 

  14. 14.

    Severino P, Pinho SC, Souto EB, Santana MH. Polymorphism, crystallinity and hydrophilic–lipophilic balance of stearic acid and stearic acid–capric/caprylic triglyceride matrices for production of stable nanoparticles. Colloids Surf B Biointerfaces. 2011;86(1):125–30.

    CAS  Google Scholar 

  15. 15.

    Severino P, Pinho SC, Souto EB, Santana MH. Crystallinity of Dynasan® 114 and Dynasan® 118 matrices for the production of stable Miglyol®-loaded nanoparticles. J Therm Anal Calorim. 2011;108(1):101–8.

    Google Scholar 

  16. 16.

    Jenning V, Gysler A, Schäfer-Korting M, et al. Vitamin A-loaded solid lipid nanoparticles for topical use: occlusive properties and drug targeting to the upper skin. Eur J Pharm Biopharm. 2000;49:211–8.

    CAS  PubMed  Google Scholar 

  17. 17.

    Tian H, Lu Z, Li D, Hu J. Preparation and characterization of citral-loaded solid lipid nanoparticles. Food Chem. 2018;248:78–85.

    CAS  PubMed  Google Scholar 

  18. 18.

    Tian H, Lu Z, Li D, Hu J. Preparation and characterization of citral-loaded solid lipid nanoparticles. Food Chem. 2018;15(248):78–85.

    Google Scholar 

  19. 19.

    Teeranachaideekul V, Souto EB, Junyaprasert VB, Müller RH. Cetyl palmitate-based NLC for topical delivery of coenzyme Q10–development, physicochemical characterization and in vitro release studies. Eur J Pharm Biopharm. 2007;67(1):141–8.

    CAS  PubMed  Google Scholar 

  20. 20.

    Desai D, Kothari S, Huang M. Solid-state interaction of stearic acid with povidone and its effect on dissolution stability of capsules. Int J Pharm. 2008;354(1–2):77–81.

    CAS  PubMed  Google Scholar 

  21. 21.

    Rodenak-Kladniew B, Islan GA, de Bravo MG, Durán N, Castro GR. Design, characterization and in vitro evaluation of linalool-loaded solid lipidnanoparticles as potent tool in cancer therapy. Colloids Surf B Biointerfaces. 2017;154:123–32.

    CAS  PubMed  Google Scholar 

  22. 22.

    Aslam MS, Naveed S, Ahmed A, Abbas Z, Gull I, Athar MA. Side effects of chemotherapy in cancer patients and evaluation of patients opinion about starvation based differential chemotherapy. J Cancer Therapy. 2014;5(8):817.

    Google Scholar 

  23. 23.

    Pooja D, Tunki L, Kulhari H, Reddy BB, Sistla R. Optimization of solid lipid nanoparticles prepared by a single emulsification-solvent evaporation method. Data Brief. 2015;6:15–9.

    PubMed  PubMed Central  Google Scholar 

Download references


The authors acknowledge the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES/Brazil), Fundação de AmAPro a Pesquisa do Estado de Sergipe (FAPITEC, EDITAL CAPES/FAPITEC/SE N° 01/2016—Programa de apoio a pós-doutorado no estado de Sergipe (PPDOC-SE): atração e qualificação de pesquisadores) e do Conselho Nacional de Pesquisas (CNPq) for supporting funds.

Author information



Corresponding author

Correspondence to Patrícia Severino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cavendish, M., Nalone, L., Barbosa, T. et al. Study of pre-formulation and development of solid lipid nanoparticles containing perillyl alcohol. J Therm Anal Calorim 141, 767–774 (2020).

Download citation


  • Perillyl alcohol
  • Solid lipid nanoparticle
  • Cetyl palmitate
  • Pre-formulation