Thermal hazard evaluation of N-guanylurea dinitramide (GUDN) by using kinetic-based simulation approach

Abstract

To promote the practical application of N-guanylurea dinitramide (GUDN), it is necessary to identify the thermal kinetics and evaluate thermal hazards of GUDN under various environmental conditions. In this study, we present that the thermal decomposition of GUDN is a typical autocatalytic reaction and the model-based kinetics was established by simultaneous fitting of a series of nonisothermal DSC data at different heating rates, which can be described as a generalized autocatalytic model, expressed as \(\frac{{{\text{d}}\alpha }}{{{\text{d}}t}} = 2.29 \times 10^{23} \exp \left( { - 225240/RT} \right)\left( {1 - \alpha } \right)^{1.76} \left( {\alpha^{1.47} + 0.59{\text{e}}^{ - 18300{\text{RT}}} } \right)\). The reaction model exhibits a reasonable fitting to the experimental results with a high correlation coefficient R2 of 0.9994. Based on the established kinetic model, important thermal safety indicators, such as the time to conversion limit, adiabatic time to maximum rate, and self-accelerating decomposition temperature, were simulated, providing important basis concerning the thermal hazard of GUDN in practical applications.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Nikita VM, Nobuyoshi K, Dmitry BM, Alla NP. Kinetics analysis of overlapping multistep thermal decomposition comprising exothermic and endothermic process: thermolysis of ammonium dinitramide. Phys Chem Chem Phys. 2017;19:3254–64.

    Article  Google Scholar 

  2. 2.

    Badgujar DM, Talawar M, Asthana SN, Mahulikar PP. Advances in science and technology of modern energetic materials: an overview. J Hazard Mater. 2008;151:289–305.

    CAS  Article  Google Scholar 

  3. 3.

    Östmark H, Helte A, et al. N-guanylurea dinitramide (FOX-12): properties FOI-R–2312—SE; 2007.

  4. 4.

    Menke K, Eisel S, Gas generators and propellants based on guanylurea dinitramide with additional energetic components. DE102011100113A1; 2012.

  5. 5.

    Lei YP, Yang SQ, Xu SL, Zhang T. Progress in insensitive high energetic materials N-guanylurea-dinitramide. Hanneng Cailiao (Chin. J. Energ. Mater). 2007;15:289–93.

    CAS  Google Scholar 

  6. 6.

    Bemm U, Östmark H, Bergman H, Langler A. Fox-12, A new energetic material with low sensitivity for propellants and explosive applications. In: Insentive munitions and energetic materials technology symposium; 1998.

  7. 7.

    Badgujar DM, Rashmi M, et al. Process optimization for synthesis of guanylurea dinitramide (GUDN). Propellants, Explos, Pyrotech. 2014;39:658–61.

    CAS  Article  Google Scholar 

  8. 8.

    Östmark H, Bemm U, Bergman H, Langlet A. N-guanylurea-dinitramide: a new energetic material with low sensitivity for propellants and explosives applications. Thermochim Acta. 2002;384:253–9.

    Article  Google Scholar 

  9. 9.

    Zhao FQ, Chen P, Yuan HA, et al. Thermochemical properties and non-isothermal decomposition reaction kinetics of N-guanylurea dinitramide (GUDN). Chin J Chem. 2004;22:136–41.

    CAS  Article  Google Scholar 

  10. 10.

    Santhosh G, Soumyamol PB, Sreejith M, et al. Isoconversional approach for the non-isothermal decomposition kinetics of guanylurea dinitramide (GUDN). Thermochim Acta. 2016;632:46–51.

    CAS  Article  Google Scholar 

  11. 11.

    Santhosh G, et al. Thermal decomposition kinetics of ammonium dinitramide-guanylurea dinitramide mixture analyzed by isoconversional methods. Thermochim Acta. 2008;480:43–8.

    CAS  Article  Google Scholar 

  12. 12.

    Gao HX, Zhang H, Zhao FQ, et al. Kinetic behaviour of the exothermic decomposition reaction of N-guanylurea dinitramide. Acta Phys Chim Sin. 2008;24:453–8.

    CAS  Google Scholar 

  13. 13.

    Benin AI, Kossoy AA, Sharikov FY. Automated system for kinetic research in thermal analysis. J Thermal Anal. 1992;38:1151–65.

    CAS  Article  Google Scholar 

  14. 14.

    Kossoy AA, Benin A, Akhmetshin Y. An advanced approach to reactivity rating. J Hazard Mater. 2005;118:9–17.

    CAS  Article  Google Scholar 

  15. 15.

    Zhao L, Yin Y, Sui HL, et al. Kinetic model of thermal decomposition of CL-20/HMX co-crystal for thermal safety prediction. Thermochim Acta. 2019;674:44–51.

    CAS  Article  Google Scholar 

  16. 16.

    Wang SY, Kossoy AA, Yao YD, et al. Kinetics-based simulation approach to evaluate thermal hazards of benzaldehyde oxime by DSC tests. Thermochim Acta. 2017;655:319–25.

    CAS  Article  Google Scholar 

  17. 17.

    Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Plolym Sci Part C: Polym Symp. 1964;6:183–95.

    Article  Google Scholar 

  18. 18.

    The website of the software manufacturer: www.cisp.spb.ru.

  19. 19.

    Fisher HG, Forrest HS, Grossel SS, et al. Emergency relief system design using DIERS technology-the design institute for emergency relief systems (DIERS), New York; 1992, pp. 285–393.

  20. 20.

    Kossoy AA, Singh J, Koludarova EY. Mathematical methods for application of experimental adiabatic data—an update and extension. J Loss Prev Process Ind. 2015;33:88–100.

    Article  Google Scholar 

  21. 21.

    Niu H, Chen SS, Shu QH, et al. Preparation, characterization and thermal risk evaluation of dihydroxylammonium 5, 5′-bistetrazole-1, 1′-diolate based polymer bonded explosive. J Hazard Mater. 2017;338:208–17.

    CAS  Article  Google Scholar 

  22. 22.

    Kossoy AA, Belokhvostov VM, Koludarova EY. Thermal decomposition of AIBN, Part D: verification of simulation method for SADT determination based on AIBN benchmark. Thermochim Acta. 2015;621:36–43.

    CAS  Article  Google Scholar 

  23. 23.

    Roudit B, Polly P, Berger B. Evaluating SADT by advanced kinetics-based simulation approach. J Therm Anal Calorim. 2008;93:153–61.

    Article  Google Scholar 

  24. 24.

    Stoessel F. Thermal safety of chemical processes. Weinheim: Wiley; 2008. p. 270–82.

    Book  Google Scholar 

  25. 25.

    Kossoy AA, Sheinman IY. Comparative analysis of the methods for SADT determination. J Hazard Mater. 2007;142:626–38.

    CAS  Article  Google Scholar 

  26. 26.

    Rao GN, Feng W, Zhang J, et al. Simulation approach to decomposition kinetics and thermal hazards of hexamethylenetetramine. J Therm Anal Calorim. 2018;8:1–10.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21805260).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Fengguo Ma or Ying Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Ma, F., Sun, J. et al. Thermal hazard evaluation of N-guanylurea dinitramide (GUDN) by using kinetic-based simulation approach. J Therm Anal Calorim 141, 905–913 (2020). https://doi.org/10.1007/s10973-019-09074-y

Download citation

Keywords

  • GUDN
  • Thermal kinetic model
  • Thermal safety prediction