Skip to main content
Log in

Physical aspects of Darcy–Forchheimer flow and dissipative heat transfer of Reiner–Philippoff fluid

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The main focus of the present research work is to elaborate the Reiner–Philippoff fluid flow over a stretching sheet along with thermal radiation effect. A Darcy–Forchheimer medium was imposed and a linear stretching surface was used to generate the flow. Application of appropriate transformation yields nonlinear ordinary differential equation through nonlinear Navier–Stokes equations and solved by Runge–Kutta–Fehlberg shooting technique. Importance of influential variables such as velocity and temperature was elaborated graphically. It is envisaging that the boost up values of γ declines the both velocity and temperature profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. A
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

a :

Constant

\(u_{\text{w}} \left( x \right) = ax^{1/3}\) :

Stretched velocity

\(K^{*}\) :

Permeability of porous medium

\(F = \frac{{C_{\text{b}} }}{{K^{*1/2} }}\) :

Non-uniform inertia coefficient of porous medium

C b :

Drag coefficient

Fr:

Forchheimer number

K p :

Porosity parameter

T :

Fluid temperature

T w :

Wall temperature

T :

Temperature outside the surface

Pr:

Prandtl number

q w :

Heat flux from the sheet

k :

Thermal conductivity

Nu x :

Nusselt number

\(Re_{\text{x}} = \frac{{u_{\text{w}} x}}{\nu }\) :

Reynolds number

λ :

Reiner–Philippoff fluid parameter

γ :

Bingham number

σ :

Electrical conductivity,

ρ :

Fluid density

α :

Thermal diffusivity

τ w :

Wall shear stress

References

  1. Hayat T, Khan MI, Qayyum S, Alsaedi A, Khan MI. New thermodynamics of entropy generation minimization with nonlinear thermal radiation and nanomaterial. Phys Lett A. 2018;382:749–60.

    Article  CAS  Google Scholar 

  2. Rashid MM, Ijaz K, Hayat T, Khan MI, Alsaedi A. Entropy generation in flow of ferromagnetic liquid with nonlinear radiation and slip condition. J Mol Liq. 2019;276:441–52.

    Article  CAS  Google Scholar 

  3. Waqas M, Jabeen S, Hayat T, Khan MI, Alsaedi A. Modeling and analysis for magnetic dipole impact in nonlinear thermally radiating carreau nanofluid flow subject to heat generation. J Magn Magn Mater. 2019;485:197–204.

    Article  CAS  Google Scholar 

  4. Kumar R, Kumar R, Sheikholeslami M, Chamkha AJ. Irreversibility analysis of the three dimensional flow of carbon nanotubes due to nonlinear thermal radiation and quartic chemical reactions. J Mol Liq. 2019;274:379–92.

    Article  CAS  Google Scholar 

  5. Souayeh B, Kumar KG, Reddy MG, Rani S, Hdhiri N. Slip flow and radiative heat transfer behavior of Titanium alloy and ferromagnetic nanoparticles along with suspension of dusty fluid. J Mol Liq. 2019;111–223.

  6. Kumar KG. Scrutinization of 3D flow and nonlinear radiative heat transfer of non-Newtonian nanoparticles over an exponentially sheet. Int J Numer Methods Heat Fluid Flow. 2019. https://doi.org/10.1108/HFF-12-2018-0741.

    Article  Google Scholar 

  7. Lokesh HJ, Gireesha BJ, Kumar KG. Characterization of chemical reaction on magnetohydrodynamics flow and nonlinear radiative heat transfer of Casson nanoparticles over an exponentially sheet. J Nanofluids. 2019;8(6):1260–6.

    Article  Google Scholar 

  8. Gireesha BJ, Krishnamurthy MR, Kumar KG. Nonlinear radiative heat transfer and boundary layer flow of Maxwell nanofluid past stretching sheet. J Nanofluids. 2019;8(5):1093–102.

    Article  Google Scholar 

  9. Kumar KG, Gireesha BJ, Krishnamurthy MR, Rudraswamy NG. An unsteady squeezed flow of a tangent hyperbolic fluid over a sensor surface in the presence of variable thermal conductivity. Results Phys. 2017;7:3031–6.

    Article  Google Scholar 

  10. Kapur JN, Gupta RC. Two dimensional flow of Reiner–Philipp off fluids in the inlet length of a straight channel. Appl Sci Res. 1965;14:13–24.

    Article  CAS  Google Scholar 

  11. Ghoshal S. Dispersion of solutes in non-Newtonian flows through a circular tube. Chem Eng Sci. 1971;26:185–8.

    Article  CAS  Google Scholar 

  12. Na TY. Boundary layer flow of Reiner–Philipp off fluids. Int J Non-Linear Mech. 1994;29:871–7.

    Article  Google Scholar 

  13. Yam KS, Harris SD, Ingham DB, Pop I. Boundary-layer flow of Reiner–Philipp off fluids past a stretching wedge. Int J Non-Linear Mech. 2009;44:1056–62.

    Article  Google Scholar 

  14. Dat VD, Alsarraf J, Moradikazerouni A, Afrand M. Numerical investigation of γ-AlOOH nano-fluid convection performance in a wavy channel considering various shapes of nano additive. Powder Technol. 2019;345:649–65.

    Article  Google Scholar 

  15. Gandhi CVY, Vishal C, Saha P, Rao R. Functionalized multi-walled carbon nanotubes based newtonian nano fluids for medium temperature heat transfer applications. Thermal Sci Eng Progress. 2019;12:13–23.

    Article  Google Scholar 

  16. Abdullah AAA, Al-Rashed A, Shahsavar O, Rasooli MA. Numerical assessment into the hydrothermal and entropy generation characteristics of biological water-silver nano-fluid in a wavy walled micro channel heat sink. Int Commun Heat Mass Transf. 2019;104:118–26.

    Article  Google Scholar 

  17. Ajam H, Jafari SS, Freidoonimehr N. Analytical approximation of MHD nano-fluid flow induced by a stretching permeable surface using Buongiorno’s model. Ain Shams Eng J. 2018;9:525–36.

    Article  Google Scholar 

  18. Xu J, Bandyopadhyay K, Jung D. Experimental investigation on the correlation between nano-fluid characteristics and thermal properties of Al2O3 nano-particles dispersed in ethylene glycol–water mixture. Int J Heat Mass Transf. 2016;94:262–8.

    Article  CAS  Google Scholar 

  19. Sheikholeslami M, Sadoughi MK. Simulation of CuO-water nanofluid heat transfer enhancement in presence of melting surface. Int J Heat Mass Transf. 2018;116:909–19.

    Article  CAS  Google Scholar 

  20. Sheikholeslami M, Rokni HB. Numerical modeling of nanofluid natural convection in a semi annulus in existence of Lorentz force. Comput Methods Appl Mech Eng. 2017;317:419–30.

    Article  Google Scholar 

  21. Sheikholeslami M, Sajjadi H, Delouei AA, Atashafrooz M, Zhixiong L. Magnetic force and radiation influences on nanofluid transportation through a permeable media considering Al2O3 nanoparticles. J Thermal Anal Calorim. 2019;136(6):2477–85.

    Article  CAS  Google Scholar 

  22. Jafaryar M, Sheikholeslami M, Li Z, Moradi R. Nanofluid turbulent flow in a pipe under the effect of twisted tape with alternate axis. J Therm Anal Calorim. 2019;135(1):305–23.

    Article  CAS  Google Scholar 

  23. Sheikholeslami M, Jafaryar M, Shafee A, Li Z. Nanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticles. J Therm Anal Calorim. 2019;134(3):2295–303.

    Article  Google Scholar 

  24. Sheikholeslami M, Shehzad SA. Numerical analysis of Fe3O4–H2O nanofluid flow in permeable media under the effect of external magnetic source. Int J Heat Mass Transf. 2018;118:182–92.

    Article  CAS  Google Scholar 

  25. Sheikholeslami M, Gerdroodbary MB, Moradi R, Shafee A, Li Z. Application of neural network for estimation of heat transfer treatment of Al2O3–H2O nanofluid through a channel. Comput Methods Appl Mech Eng. 2019;344:1–12.

    Article  Google Scholar 

  26. Nakayama A. A unified treatment of Darcy–Forchheimer boundary-layer flows. Transp Phenomena Porous Media. 1998;1:179–204.

    Article  Google Scholar 

  27. Seddeek MA. Influence of viscous dissipation and thermophoresis on Darcy–Forchheimer mixed convection in a fluid saturated porous media. J Colloid Interface Sci. 2006;293(1):137–42.

    Article  CAS  Google Scholar 

  28. Kishan N, Srinivas M. Thermophoresis and viscous dissipation effects on Darcy–Forchheimer MHD mixed convection in a fluid saturated porous media. Adv Appl Sci Res. 2012;3(1):60–74.

    Google Scholar 

  29. Sadiq MA, Hayat T. Darcy–Forchheimer flow of magneto Maxwell liquid bounded by convectively heated sheet. Results Phys. 2016;6:884–90.

    Article  Google Scholar 

  30. Makinde OD, Ogulu A. The effect of thermal radiation on the heat and mass transfer flow of a variable viscosity fluid past a vertical porous plate permeated by a transverse magnetic field. Chem Eng Commun. 2008;195(12):1575–84.

    Article  CAS  Google Scholar 

  31. Ganesh NV, Hakeem AKA, Ganga B. Darcy–Forchheimer flow of hydro magnetic nanofluid over a stretching/shrinking sheet in a thermally stratified porous medium with second order slip viscous and Ohmic dissipations effects. Ain Shams Eng J. 2018;9:939–51.

    Article  Google Scholar 

  32. Raju SS, Kumar KG, Rahimi-Gorji M, Khan I. Darcy–Forchheimer flow and heat transfer augmentation of a viscoelastic fluid over an incessant moving needle in the presence of viscous dissipation. Microsyst Technol. 2019;25(9):3399–405.

    Article  Google Scholar 

  33. Kumar KG, Shehzad SA, Ambreen T, Anwar MI. Heat transfer augmentation in water-based TiO2 nanoparticles through a converging/diverging channel by considering Darcy–Forchheimer porosity. Revista Mexicana de Física. 2019;65:373–81.

    Article  Google Scholar 

  34. Kumar KG, Chamkha AJ. Darcy–Forchheimer flow and heat transfer of water-based Cu nanoparticles in convergent/divergent channel subjected to particle shape effect. Eur Phys J Plus. 2019;134(3):107.

    Article  Google Scholar 

  35. Kumar KG, Rahimi-Gorji M, Reddy MG, Chamkha AJ, Alarifi IM. Enhancement of heat transfer in a convergent/divergent channel by using carbon nanotubes in the presence of a Darcy–Forchheimer medium. In: Microsystem technologies, 1–10, 2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Ganesh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnaneswara Reddy, M., Sudharani, M.V.V.N.L., Ganesh Kumar, K. et al. Physical aspects of Darcy–Forchheimer flow and dissipative heat transfer of Reiner–Philippoff fluid. J Therm Anal Calorim 141, 829–838 (2020). https://doi.org/10.1007/s10973-019-09072-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-09072-0

Keywords

Navigation