Comparative study of hydration of monocalcium aluminate and quaternary phase and the amorphous AH3 phase in their hydrates

Abstract

Monocalcium aluminate (CaAl2O4, CA) and quaternary (Q) phase (Ca20Al26Mg3Si3O68) are the two principal hydraulic phases in calcium aluminate cement. Their strength development has been reported. However, little information about the difference of their hydration and hydrates composition is available. For this reason, the hydration process of CA and Q phase was investigated and compared. Results of conductometry indicate that the rate of Q phase hydrates precipitation is much slower than that CA latter. Hydrates identification demonstrates that the most prominent difference between the hydrates for these two compounds is the amorphous AH3 content. The quantity of amorphous AH3 (A=Al2O3, H=H2O) in Q phase hydrates is evidently less than that of CA, as confirmed by FTIR, TG and BSE. Even-distributed amorphous AH3 fills in the crystalline skeleton of calcium aluminate hydrates (C–A–H) enhancing the compactness of CA paste. Hence, CA exhibits a higher 72-day compressive strength than Q phase.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Juenger MCG, Winnefeld F, Provis JL, Ideker JH. Advances in alternative cementitious binders. Cem Concr Res. 2011;41:1232–43.

    CAS  Article  Google Scholar 

  2. 2.

    Xiao G, Yang S, Ding D, Ren Y, Lv L, Yang P, Hou X, Gao J. One-step synthesis of in situ carbon-containing calcium aluminate cement as binders for refractory castables. Ceram Int. 2018;44:15378–84.

    CAS  Article  Google Scholar 

  3. 3.

    Scrivener KL, Cabiron JL, Letourneux R. High-performance concretes from calcium aluminate cements. Cem Concr Res. 1999;29:1215–23.

    CAS  Article  Google Scholar 

  4. 4.

    Duran A, Sirera R, Pérez-Nicolás M, Navarro-Blasco I, Fernández JM, Alvarez JI. Study of the early hydration of calcium aluminates in the presence of different metallic salts. Cem Concr Res. 2016;81:1–15.

    CAS  Article  Google Scholar 

  5. 5.

    Chavda MA, Bernal SA, Apperley DC, Kinoshita H, Provis JL. Identification of the hydrate gel phases present in phosphate-modified calcium aluminate binders. Cem Concr Res. 2015;70:21–8.

    CAS  Article  Google Scholar 

  6. 6.

    Navarro-Blasco I, Duran A, Sirera R, Fernández JM, Alvarez JI. Solidification/stabilization of toxic metals in calcium aluminate cement matrices. J Hazard Mater. 2013;260:89–103.

    CAS  Article  Google Scholar 

  7. 7.

    Baltakys K, Sarapajevaite G, Dambrauskas T. The influence of different additives on the early-stage hydration of calcium aluminate cement. J Therm Anal Calorim. 2018;134:89–99.

    CAS  Article  Google Scholar 

  8. 8.

    Liu S, Li Q, Han W. Effect of various alkalis on hydration properties of alkali-activated slag cements. J Therm Anal Calorim. 2017;131:3093–104.

    Article  Google Scholar 

  9. 9.

    Dourdounis E, Stivanakis V, Angelopoulos GN, Chaniotakis E, Frogoudakis E, Papanastasiou D, Papamantellos DC. High-alumina cement production from FeNi-ERF slag, limestone and diasporic bauxite. Cem Concr Res. 2004;34:941–7.

    CAS  Article  Google Scholar 

  10. 10.

    Midgley HG, Ryder JF. The relationship between mineral composition and strength development of high alumina cement. Cem Concr Res. 1977;7:669–71.

    CAS  Article  Google Scholar 

  11. 11.

    Taylor HFW. Cement chemistry. 2nd ed. London: Thomas Telford Publishing; 1997.

    Google Scholar 

  12. 12.

    Parker TW, Ryder JF. Proceedings of 3rd international symposium chemistry of cement, C and CA, London, 524, 1954.

  13. 13.

    Kaprálik I, Stevula L, Hanic F. Hydration and hydraulic properties of the Q phase in the system CaO–Al2O3–MgO–H2O referred to high alumina cements. Cem Concr Res. 1989;19:519–26.

    Article  Google Scholar 

  14. 14.

    Kaiser GGK. Mineral surfaces and soil organic matter. Eur J Soil Sci. 2003;54(2):219–36.

    CAS  Article  Google Scholar 

  15. 15.

    Song F, Yu Z, Yang F, Lu Y, Liu Y. Microstructure of amorphous aluminum hydroxide in belite-calcium sulfoaluminate cement. Cem Concr Res. 2015;71:1–6.

    CAS  Article  Google Scholar 

  16. 16.

    Pelletier-Chaignat L, Winnefeld F, Lothenbach B, Saout GL, Müller CJ, Famy C. Influence of the calcium sulphate source on the hydration mechanism of Portland cement–calcium sulphoaluminate clinker–calcium sulphate binders. Cem Concr Compos. 2011;33:551–61.

    CAS  Article  Google Scholar 

  17. 17.

    Chang J, Zhang Y, Shang X, Zhao J, Yu X. Effects of amorphous AH3 phase on mechanical properties and hydration process of C4A3S–CSH2–CH–H2O system. Constr Build Mater. 2017;133:314–22.

    CAS  Article  Google Scholar 

  18. 18.

    Lothenbach B, Pelletier-Chaignat L, Winnefeld F. Stability in the system CaO–Al2O3–H2O. Cem Concr Res. 2012;42:1621–34.

    CAS  Article  Google Scholar 

  19. 19.

    Rashid S, Turrillas X. Hydration kinetics of CaAl2O4 using synchrotron energy-dispersive diffraction. Thermochim Acta. 1997;302:25–34.

    CAS  Article  Google Scholar 

  20. 20.

    Lagosz A, Malolepszy J, Garrault S. Hydration of tricalcium aluminate in the presence of various amounts of calcium sulphite hemihydrate: conductivity tests. Cem Concr Res. 2006;36:1016–22.

    CAS  Article  Google Scholar 

  21. 21.

    Pourchez J, Grosseau P, Ruot B. Current understanding of cellulose ethers impact on the hydration of C3A and C3A-sulphate systems. Cem Concr Res. 2009;39:664–9.

    CAS  Article  Google Scholar 

  22. 22.

    Gosselin C, Gallucci E, Scrivener K. Influence of self heating and Li2SO4 addition on the microstructural development of calcium aluminate cement. Cem Concr Res. 2010;40:1555–70.

    CAS  Article  Google Scholar 

  23. 23.

    Torréns-Martín D, Fernández-Carrasco L, Martínez-Ramírez S. Hydration of calcium aluminates and calcium sulfoaluminate studied by Raman spectroscopy. Cem Concr Res. 2013;47:43–50.

    Article  Google Scholar 

  24. 24.

    Nalet C, Nonat A. Impacts of hexitols on the hydration of a tricalcium aluminate-calcium sulfate mixture. Cem Concr Res. 2016;89:177–86.

    CAS  Article  Google Scholar 

  25. 25.

    Pena P, Rivas Mercury JM, de Aza AH, Turrillas X, Sobrados I, Sanz J. Solid-state 27Al and 29Si NMR characterization of hydrates formed in calcium aluminate–silica fume mixtures. J Solid State Chem. 2008;181:1744–52.

    CAS  Article  Google Scholar 

  26. 26.

    Tarte P. Infrared spectra of inorganic aluminates and characteristic vibrational frequencies of AlO4 tetrahedra and AlO6 octahedra. Spectrochim Acta A Mol Biomol Spectrosc. 1967;23A(7):2127–43.

    Article  Google Scholar 

  27. 27.

    Fernández-Carrasco L, Torréns-Martín D, Morales LM, Martinez-Ramírez S. Infrared spectroscopy in the analysis of building and construction materials. In: Theophanides T, editor. Infrared spectroscopy—materials science, engineering and technology. London: INTECH; 2012. p. 369–82.

    Google Scholar 

  28. 28.

    Chervonnyi AD. Infrared spectroscopy of minerals and related compounds. Berlin: Springer; 2016.

    Google Scholar 

  29. 29.

    Frost RL, Kloprogge J, Russell SC, Szetu JL. Dehydroxylation and structure of alumina gels prepared from trisecbutoxyaluminium. Thermochim Acta. 1999;329:47–56.

    CAS  Article  Google Scholar 

  30. 30.

    Hidalgo López A, García Calvo JL, García Olmo J, Petit S, Alonso MC. Microstructural evolution of calcium aluminate cements hydration with silica fume and fly ash additions by scanning electron microscopy, and mid and near-infrared spectroscopy. J Am Ceram Soc. 2008;91:1258–65.

    Article  Google Scholar 

  31. 31.

    Montes M, Pato E, Carmona-Quiroga PM, Blanco-Varela MT. Can calcium aluminates activate ternesite hydration? Cem Concr Res. 2018;103:204–15.

    CAS  Article  Google Scholar 

  32. 32.

    Keller WD, Pickett EE. Atlas of infrared spectroscopy of clay minerals and their admixtures. Earth-Sci Rev. 1977;13:197–9.

    Article  Google Scholar 

  33. 33.

    Gosselin C, Scrivener K. Microstructure development of calcium aluminate cement accelerated with lithium sulphate. In: Proceedings of the centenary conference. HIS BRE Press: Avignon; 2008. pp. 109–122.

  34. 34.

    Ukrainczyk N, Matusinovic T, Kurajica S, Zimmermann B, Sipusic J. Dehydration of a layered double hydroxide—C2AH8. Thermochim Acta. 2007;464:7–15.

    CAS  Article  Google Scholar 

  35. 35.

    Zhang Y, Chang J, Ji J. AH3 phase in the hydration product system of AFt-AFm-AH3 in calcium sulfoaluminate cements: a microstructural study. Constr Build Mater. 2018;167:587–96.

    CAS  Article  Google Scholar 

  36. 36.

    Zhang Y, Chang J, Zhao J. Microstructural comparison of the AH3 phase in the hydration of three structural modifications of ye’elimite. J Am Ceram Soc. 2018;102:2165–75.

    Google Scholar 

  37. 37.

    Morsy MS, Alsayed SH, Aqel M. Hybrid effect of carbon nanotube and nano-clay on physico-mechanical properties of cement mortar. Constr Build Mater. 2011;25:145–9.

    Article  Google Scholar 

  38. 38.

    Reig L, Soriano L, Borrachero MV, Monzó J, Payá J. Influence of calcium aluminate cement (CAC) on alkaline activation of red clay brick waste (RCBW). Cem Concr Compos. 2016;65:177–85.

    CAS  Article  Google Scholar 

  39. 39.

    Meng LQYT, Xu XY. Studies of CaO–Al2O3–MgO–SiO2 system in relation to the formation and hydration of phase Q. Bull Chin Ceram Soc. 1998;3:21–34.

    Google Scholar 

  40. 40.

    Matusinović T, Šipušić J, Vrbos N. Porosity–strength relation in calcium aluminate cement pastes. Cem Concr Res. 2003;33:1801–6.

    Article  Google Scholar 

  41. 41.

    Wang Y, Zhu B, Li X, Chen P. Effect of dispersants on the hydrate morphologies of spinel-containing calcium aluminate cement and on the properties of refractory castables. Ceram Int. 2016;42:711–20.

    CAS  Article  Google Scholar 

  42. 42.

    Rettel RSA, Gessner W. Investigations on the influence of alumina on the hydration of monocalcium aluminate at different temperatures. Cem Concr Res. 1993;23:1056–64.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Key R&D Program of China (Nos. 2016YFB0303501 and 2017YFB0310001) and the National Natural Science Foundation of China (Nos. 51772226, 51802238 and 51272193).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yongjia He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ding, W., He, Y., Lu, L. et al. Comparative study of hydration of monocalcium aluminate and quaternary phase and the amorphous AH3 phase in their hydrates. J Therm Anal Calorim 141, 707–716 (2020). https://doi.org/10.1007/s10973-019-09069-9

Download citation

Keywords

  • Monocalcium aluminate
  • Q phase
  • Hydration
  • Amorphous AH3
  • Compressive strength