Solar chimney power plant and its correlation with ambient wind effect

Abstract

The use of solar energy in the present era is necessary and important as well. Solar chimney technology for power generation is one of the solar energy harvesting techniques where the direct and dispersed solar radiations are absorbed in the solar chimney power plant. The effectiveness of solar chimneys has been proven for power generation, and it is a promising approach to future energy generation plans. This article provides a comprehensive scenario of the research and development of solar energy technology as well as the history of solar chimneys in the last few decades. It describes the state of empirical and theoretical studies and the physical processes for this commonly used technology. Finally, this paper presents some avenues to cover the practical required approaches for solar chimney power generation plant. In this study, the numerical investigation is also considered to study the stack configuration effect on the performance of a solar chimney power plant. Numerical simulation of the proposed configuration shows that the speculated geometry can reduce the throttling effect of the deflected plume.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Sadeqi Z, Esfahani ZD, Horri HR. Prioritize the factors affecting the location of renewable energy plants (solar and wind energy) in Kerman Province using GIS and multi-criteria decision-making techniques. J Energy Policy Plan Res. 2013;1(2):93–110.

    Google Scholar 

  2. 2.

    Antonakakis N, Chatziantoniou I, Filis G. Spillovers between oil and stock markets at times of geopolitical unrest and economic turbulence. Munich: University Library of Munich; 2014.

    Google Scholar 

  3. 3.

    Goodwin ARH. The future of oil and gas fossil fuels. In: Letcher TM, editor. Future energy. Oxford: Elsevier; 2008. p. 1–24.

    Google Scholar 

  4. 4.

    BP Energy Outlook 2040 - Summary tables, Published by BP, Source link: BP Energy Outlook 2040 - Summary tables - Consumption

  5. 5.

    Council WE. World energy resources: 2013 survey; 2013 [cited 2016].

  6. 6.

    Kirstein CF, von Backström TW. Flow through a solar chimney power plant collector-to-chimney transition section. J Sol Energy Eng. 2006;128(3):312–7.

    Google Scholar 

  7. 7.

    Dhahri AO, Ahmed O. A review of solar chimney power generation technology. Int J Eng Adv Technol. 2013;2(3):1–17.

    Google Scholar 

  8. 8.

    Schlaich JR, et al. Design of commercial solar updraft tower systems—utilization of solar induced convective flows for power generation. J Solar Energy Eng. 2005;127(1):117–24.

    Google Scholar 

  9. 9.

    Anderson B. Solar energy: fundamentals in building design. New York: McGraw-Hill; 1977.

    Google Scholar 

  10. 10.

    Louis T. Optimizing collector efficiency of a solar chimney power plant. IEEE; 1985. p. 219–222.

  11. 11.

    Mouchot AB. (La) Chaleur solaire et ses applications industrielles. Paris: Gauthier-Villars; 1869.

    Google Scholar 

  12. 12.

    Meinel AB, Meinel MP. Applied solar energy: an introduction. Michigan: Addison-Wesley; 1976.

    Google Scholar 

  13. 13.

    Cabanyes I. Proyecto de motor solar. Magazine La Energía Eléctrica; 1903 (in Spanish).

  14. 14.

    Günther HWDH. In hundert Jahren. Die künftige Energieversorgung der Welt. Franckh’sche Verlagsbuchhandlung; 1931.

  15. 15.

    Schlaich J. The solar chimney: electricity from the sun. Di 1 ban. ed. 1997, Stuttgart: Edition Axel Menges.

  16. 16.

    Schlaich J, et al. Design of commercial solar updraft tower systems—utilization of solar induced convective flows for power generation. J Sol Energy Eng. 2005;127:117–24.

    Google Scholar 

  17. 17.

    Meyer C. Towers of power—the solar updraft tower, in energize; 2008. p. 52.

  18. 18.

    Haaf W, et al. Solar chimneys part i: principle and construction of the pilot plant in Manzanares. Int J Solar Energy. 1983;2(1):3–20.

    Google Scholar 

  19. 19.

    Haaf W. Solar chimneys. Int J Solar Energy. 1984;2(2):141–61.

    Google Scholar 

  20. 20.

    Zhou X, Wang F, Ochieng RM. A review of solar chimney power technology. Renew Sustain Energy Rev. 2010;14(8):2315–38.

    Google Scholar 

  21. 21.

    Cloete R. Solar tower sheds light on little-used technology. Engineering News; p. 7–25. http://www.engineeringnews.co.za/article.php?a_id=137580 (2008).

  22. 22.

    Kasaeian AB, et al. A review on solar chimney systems. Renew Sustain Energy Rev. 2017;67:954–87.

    Google Scholar 

  23. 23.

    Kasaeian A, Ghalamchi M, Ghalamchi M. Simulation and optimization of geometric parameters of a solar chimney in Tehran. Energy Convers Manag. 2014;83:28–34.

    Google Scholar 

  24. 24.

    Kasaeian A, Heydari E, Nasirivatan S. Experimental investigation of climatic effects on the efficiency of a solar chimney pilot power plant. Renew Sustain Energy Rev. 2011;15:5202–6.

    Google Scholar 

  25. 25.

    Ghalamchi M, et al. An experimental study on the thermal performance of a solar chimney with different dimensional parameters. Renew Energy. 2016;91:477–83.

    Google Scholar 

  26. 26.

    Ketlogetswe C, Fiszdon JK, Seabe OO. RETRACTED: Solar chimney power generation project—the case for Botswana. Renew Sustain Energy Rev. 2008;12(7):2005–12.

    Google Scholar 

  27. 27.

    Zhou X, et al. Experimental study of temperature field in a solar chimney power setup. Appl Therm Eng. 2007;27:2044–50.

    Google Scholar 

  28. 28.

    Koonsrisuk A, Chitsomboon T. Dynamic similarity in solar chimney modeling. Sol Energy. 2007;81(12):1439–46.

    Google Scholar 

  29. 29.

    Ahmed OK, Hussein AS. New design of solar chimney (case study). Case Stud Therm Eng. 2018;11:105–12.

    Google Scholar 

  30. 30.

    Gannon A, von Backström T. Solar chimney cycle analysis with system loss and solar collector performance. J Solar Energy Eng. 2000;122:133–7.

    Google Scholar 

  31. 31.

    Ruprecht A. Stromung Stechnische Gestaltung eines Aufwin dkrafwerks (fluid dynamic design of a solar updraft power plant). In: Proceedings of the international symposium uber Anwendungen der Informatik und Mathematik in Architektur und Bauwesen, June 10–12, Bauhaus—University Weimar, Germany; 2003.

  32. 32.

    dos Bernardes MAS, Voß A, Weinrebe G. Thermal and technical analyses of solar chimneys. Solar Energy. 2003;75(6):511–24.

    Google Scholar 

  33. 33.

    Harris DJ, Helwig N. Solar chimney and building ventilation. Appl Energy. 2007;84(2):135–46.

    Google Scholar 

  34. 34.

    Najm OA, Shaaban S. Numerical investigation and optimization of the solar chimney collector performance and power density. Energy Convers Manag. 2018;168:150–61.

    Google Scholar 

  35. 35.

    Rabehi R, et al. Numerical simulation of solar chimney power plant adopting the fan model. Renew Energy. 2018;126:1093–101.

    Google Scholar 

  36. 36.

    Neves LDO, Marques da Silva F. Simulation and measurements of wind interference on a solar chimney performance. J Wind Eng Ind Aerodyn. 2018;179:135–45.

    Google Scholar 

  37. 37.

    Hussain FM, Al-Sulaiman FA. Performance analysis of a solar chimney power plant design aided with reflectors. Energy Convers Manag. 2018;177:30–42.

    Google Scholar 

  38. 38.

    Xu Y, Zhou X. Performance of divergent-chimney solar power plants. Sol Energy. 2018;170:379–87.

    Google Scholar 

  39. 39.

    Fathi N, et al. Efficiency enhancement of solar chimney power plant by use of waste heat from nuclear power plant. J Clean Prod. 2018;180:407–16.

    Google Scholar 

  40. 40.

    Li G, et al. Study on the performance of a solar collector with heat collection and storage. Appl Therm Eng. 2019;147:380–9.

    Google Scholar 

  41. 41.

    Amudam Y, Chandramohan VP. Influence of thermal energy storage system on flow and performance parameters of solar updraft tower power plant: a three dimensional numerical analysis. J Clean Prod. 2019;207:136–52.

    Google Scholar 

  42. 42.

    Pastohr H, Kornadt O, Gürlebeck K. Numerical and analytical calculations of the temperature and flow field in the upwind power plant. Int J Energy Res. 2004;28:495–510.

    CAS  Google Scholar 

  43. 43.

    Xu G, et al. Numerical analysis on the performance of solar chimney power plant system. Energy Convers Manag. 2011;52(2):876–83.

    Google Scholar 

  44. 44.

    Ming T, et al. Numerical analysis of flow and heat transfer characteristics in solar chimney power plants with energy storage layer. Energy Convers Manag. 2008;49:2872–9.

    CAS  Google Scholar 

  45. 45.

    Guo P, Li JY, Wang Y. Numerical simulations of solar chimney power plant with radiation model. Renew Energy. 2014;62:24–30.

    Google Scholar 

  46. 46.

    Gholamalizadeh E, Kim MH. Three-dimensional CFD analysis for simulating the greenhouse effect in solar chimney power plants using a two-band radiation model. Renew Energy. 2014;63:498–506.

    Google Scholar 

  47. 47.

    Chergui T, Larbi S, Bouhdjar A. Thermo-hydrodynamic aspect analysis of flows in solar chimney power plants—a case study. Renew Sustain Energy Rev. 2010;14:1410–8.

    Google Scholar 

  48. 48.

    Sangi R, Amidpour M, Hosseinizadeh B. Modeling and numerical simulation of solar chimney power plants. Solar Energy. 2011;85:829–38.

    Google Scholar 

  49. 49.

    Ayadi A, et al. Experimental and numerical analysis of the collector roof height effect on the solar chimney performance. Renew Energy. 2018;115:649–62.

    Google Scholar 

  50. 50.

    Gholamalizadeh E, Kim M-H. CFD (computational fluid dynamics) analysis of a solar-chimney power plant with inclined collector roof. Energy. 2016;107:661–7.

    Google Scholar 

  51. 51.

    Patel K, Prasad SD, Ahmed MR. Computational studies on the effect of geometric parameters on the performance of a solar chimney power plant. Energy Convers Manag. 2014;77:424–31.

    Google Scholar 

  52. 52.

    Sangi R. Performance evaluation of solar chimney power plants in Iran. Renew Sustain Energy Rev. 2012;16(1):704–10.

    Google Scholar 

  53. 53.

    Hamdan MO. Analysis of solar chimney power plant utilizing chimney discrete model. Renew Energy. 2013;56:50–4.

    Google Scholar 

  54. 54.

    Tingzhen M, et al. Numerical simulation of the solar chimney power plant systems coupled with turbine. Renew Energy. 2008;33(5):897–905.

    Google Scholar 

  55. 55.

    Petela R. Thermodynamic study of a simplified model of the solar chimney power plant. Sol Energy. 2009;83(1):94–107.

    Google Scholar 

  56. 56.

    Hammadi, S. H. Solar updraft tower power plant with thermal storage. Basrah J Eng Sci. (2009);9(1):9–16.

  57. 57.

    Tingzhen M, Wei L, Yuan P. Numerical analysis of the solar chimney power plant with energy storage layer. In: Proceedings of ISES world congress 2007, vols. I–V. Berlin: Springer; 2009. p. 1800–1805.

  58. 58.

    Bernardes M, Dos S. Convective heat transfer analysis of solar chimney power plant collectors. In: Heat transfer-Mathematical modeling, Numerical Methods and Information Technology, IntechOpen. 2011; p. 607–620.

  59. 59.

    Hamdan MO. Analysis of a solar chimney power plant in the Arabian Gulf region. Renew Energy. 2011;36(10):2593–8.

    Google Scholar 

  60. 60.

    Li J-Y, Guo P-H, Wang Y. Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines. Renew Energy. 2012;47:21–8.

    Google Scholar 

  61. 61.

    Li Y, Liu S. Experimental study on thermal performance of a solar chimney combined with PCM. Appl Energy. 2014;114:172–8.

    Google Scholar 

  62. 62.

    Dhahri A, Omri A. A review of solar chimney power generation technology. Int J Eng Adv Technol. 2013;2(3):1–17.

    Google Scholar 

  63. 63.

    Bamisile O. A review of solar chimney technology: its’ application to desert prone villages/regions in Northern Nigeria, Int J Sci Eng Res. 2014;5(12):1210–1216.

  64. 64.

    Rezaei Shahreza A, Imani H. Experimental and numerical investigation on an innovative solar chimney. Energy Convers Manag. 2015;95:446–52.

    Google Scholar 

  65. 65.

    Ahmadi G, Toghraie D, Akbari OA. Efficiency improvement of a steam power plant through solar repowering. Int J Exergy. 2017;22(2):158–82.

    CAS  Google Scholar 

  66. 66.

    Ahmadi G, Toghraie D, Akbari OA. Solar parallel feed water heating repowering of a steam power plant: a case study in Iran. Renew Sustain Energy Rev. 2017;77:474–85.

    Google Scholar 

  67. 67.

    Ahmadi G, et al. Evaluation of synchronous execution of full repowering and solar assisting in a 200 MW steam power plant, a case study. Appl Therm Eng. 2017;112:111–23.

    Google Scholar 

  68. 68.

    Ahmadi GR, Toghraie D. Energy and exergy analysis of Montazeri Steam Power Plant in Iran. Renew Sustain Energy Rev. 2016;56:454–63.

    Google Scholar 

  69. 69.

    Zhou X, Yuan S. Wind effects on a solar updraft power plant. J Wind Eng Ind Aerodyn. 2017;170:294–305.

    Google Scholar 

  70. 70.

    Zhou X, et al. Numerical investigation of a plume from a power generating solar chimney in an atmospheric cross flow. Atmos Res. 2009;91(1):26–35.

    Google Scholar 

  71. 71.

    Shen W, et al. Numerical analysis on an industrial-scaled solar updraft power plant system with ambient crosswind. Renew Energy. 2014;68:662–76.

    Google Scholar 

  72. 72.

    Ming T, et al. Numerical analysis on the influence of ambient crosswind on the performance of solar updraft power plant system. Renew Sustain Energy Rev. 2012;16(8):5567–83.

    Google Scholar 

  73. 73.

    Al-Kayiem HH, et al. Performance evaluation of hybrid solar chimney for uninterrupted power generation. Energy. 2019;166:490–505.

    Google Scholar 

  74. 74.

    Asayesh M, Kasaeian A, Ataei A. Optimization of a combined solar chimney for desalination and power generation. Energy Convers Manag. 2017;150:72–80.

    Google Scholar 

  75. 75.

    Habibollahzade A, et al. Enhanced power generation through integrated renewable energy plants: Solar chimney and waste-to-energy. Energy Convers Manag. 2018;166:48–63.

    Google Scholar 

  76. 76.

    Balijepalli R, Chandramohan VP, Kirankumar K. Performance parameter evaluation, materials selection, solar radiation with energy losses, energy storage and turbine design procedure for a pilot scale solar updraft tower. Energy Convers Manag. 2017;150:451–62.

    Google Scholar 

  77. 77.

    Fasel H, et al. CFD analysis for solar chimney power plants. Solar Energy. 2013;98:12–22.

    Google Scholar 

  78. 78.

    Hu S, Leung D, Chan JCY. Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant. Energy. 2017;120:1–11.

    Google Scholar 

  79. 79.

    Hu S, Leung DYC, Chen MZQ. Effect of divergent chimneys on the performance of a solar chimney power plant. Energy Procedia. 2017;105:7–13.

    Google Scholar 

  80. 80.

    Lavasani M, Mohammadi A, Mehdipour M. Numerical analysis of air flow characteristics in a solar chimney with the presence of a vegetation layer. Res J Iran Mech Eng. 2015;4:6–22.

  81. 81.

    Toghraie D, et al. Effects of geometric parameters on the performance of solar chimney power plants. Energy. 2018;162:1052–61.

    Google Scholar 

  82. 82.

    Maia CB, et al. Theoretical evaluation of the influence of geometric parameters and materials on the behavior of the airflow in a solar chimney. Comput Fluids. 2009;38(3):625–36.

    CAS  Google Scholar 

  83. 83.

    Cermak JE. Applications of fluid mechanics to wind engineering—a Freeman Scholar lecture. J Fluids Eng. 1975;97(1):9–38.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank University of Malaya for providing financial support under the research Grant SATU Project No. ST013-2018, FRGS Grant Project No. FP143-2019A and RU Geran Project No. RU019D-2017.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mazdak Arzpeyma or Saad Mekhilef or Kazi Md. Salim Newaz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arzpeyma, M., Mekhilef, S., Newaz, K.M.S. et al. Solar chimney power plant and its correlation with ambient wind effect. J Therm Anal Calorim 141, 649–668 (2020). https://doi.org/10.1007/s10973-019-09065-z

Download citation

Keywords

  • Renewable energy
  • Solar chimney
  • Solar collectors
  • Energy conversion
  • Wind effect