Compatibility of nitrocellulose with aniline-based compounds and their eutectic mixtures

Abstract

Recently, both aniline-based compounds and their eutectic composition were found to be efficient stabilizers for nitrocellulose-based propellants. In this study, compatibility of nitrocellulose with two aniline-based compounds, viz, N-(2-methoxyethyl)-p-nitroaniline (MENA) and N-(2-acetoxyethyl)-p-nitroaniline (ANA), and their respective eutectic (MENA + ANA) has been investigated by nonthermal techniques (FTIR and XRD) and thermal techniques (DSC and VST according to STANAG 4147 requirements). The compatibility and the thermal stability of NC mixtures were further probed using stability tests (B&J and VST), kinetic modeling via fitting and free models on VST data, the determination of the isokinetic temperature, as well as the prediction of the storage lifetime. MENA was found to be compatible with NC. However, compatibility issues appeared once ANA is present in the NC mixtures. Finally, it was found that the lack of compatibility between nitrocellulose and stabilizer affects adversely the thermal stability and reduces significantly the storage lifetime of these mixtures.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Dong J, Yan Q-L, Liu P-J, He W, Qi X-F, Zeman S. The correlations among detonation velocity, heat of combustion, thermal stability and decomposition kinetics of nitric esters. J Therm Anal Calorim. 2018;131(2):1391–403.

    CAS  Article  Google Scholar 

  2. 2.

    Wei R, Huang S, Wang Z, Wang X, Ding C, Yuen R, et al. Thermal behavior of nitrocellulose with different aging periods. J Therm Anal Calorim. 2019;136(2):651–60.

    CAS  Article  Google Scholar 

  3. 3.

    Trache D, Tarchoun AF. Analytical methods for stability assessment of nitrate esters-based propellants. Crit Rev Anal Chem. 2019;49(5):415–38.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Trache D, Tarchoun AF. Stabilizers for nitrate ester-based energetic materials and their mechanism of action: a state-of-the-art review. J Mat Sci. 2018;53(1):100–23.

    CAS  Article  Google Scholar 

  5. 5.

    Dejeaifve A, Dobson R. Tocopherol stabilisers for nitrocellulose-based propellants. Google Patents; 2018.

  6. 6.

    Tang Q, Fan X, Li J, Bi F, Fu X, Zhai L. Experimental and theoretical studies on stability of new stabilizers for N-methyl-P-nitroaniline derivative in CMDB propellants. J Hazard Mater. 2017;327:187–96.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Lundell CE, O’Sullivan OT, Gau MR, Zdilla MJ. synthesis of two lead complexes of propellant stabilizer compounds: in pursuit of novel propellant additives. Chem Sel. 2017;2(35):11673–6.

    CAS  Google Scholar 

  8. 8.

    Chelouche S, Trache D, Neves CM, Pinho SP, Khimeche K, Benziane M. Solid+ liquid equilibria and molecular structure studies of binary mixtures for nitrate ester’s stabilizers: measurement and modeling. Thermochim Acta. 2018;666:197–207.

    CAS  Article  Google Scholar 

  9. 9.

    Chelouche S, Trache D, Pinho SP, Khimeche K, Mezroua A, Benziane M. Solid-liquid phase equilibria, molecular interaction and microstructural studies on (N-(2-ethanol)-p-nitroaniline + N-(2-acetoxyethyl)-p-nitroaniline) binary mixtures. Int J Thermophys. 2018;39(11):129.

    Article  CAS  Google Scholar 

  10. 10.

    Chelouche S, Trache D, Pinho SP, Khimeche K. Experimental and modeling studies of binary organic eutectic systems to be used as stabilizers for nitrate esters-based energetic materials. Fluid Phase Equilib. 2019;498:104–15.

    CAS  Article  Google Scholar 

  11. 11.

    Chelouche S, Trache D, Tarchoun AF, Abdelaziz A, Khimeche K, Mezroua A. Organic eutectic mixture as efficient stabilizer for nitrocellulose: kinetic modeling and stability assessment. Thermochim Acta. 2019;673:78–91.

    CAS  Article  Google Scholar 

  12. 12.

    Chelouche S, Trache D, Tarchoun AF, Khimeche K. Effect of organic eutectic on nitrocellulose stability during artificial aging. J Energ Mater 2019;37(4):387–406. https://doi.org/10.1080/07370652.2019.1621407.

    CAS  Article  Google Scholar 

  13. 13.

    Guo Y, Zhao N, Zhang T, Gong H, Ma H, An T, et al. Compatibility and thermal decomposition mechanism of nitrocellulose/Cr 2 O 3 nanoparticles studied using DSC and TG-FTIR. RSC Adv. 2019;9(7):3927–37.

    CAS  Article  Google Scholar 

  14. 14.

    Yousef MA, Hudson MK, Berry BC. Study on the compatibility of azo-tetrazolate high-energy materials using DSC. J Therm Anal Calorim. 2018;133(3):1481–90.

    CAS  Article  Google Scholar 

  15. 15.

    Tunnell R. Overview and appraisal of analytical techniques for aging of solid rocket propellants. Chemical rocket propulsion. Berlin: Springer; 2017. p. 743–69.

    Google Scholar 

  16. 16.

    Li X, Lin Q-h, Zhao X-Y, Han Z-W, Wang B-l. Compatibility of 2, 4, 6, 8, 10, 12-hexanitrohexaazaisowurtzitane with a selection of insensitive explosives. J Energy Mater. 2017;35(2):188–96.

    CAS  Article  Google Scholar 

  17. 17.

    NATO Standardisation Agreement (STANAG) 4147, Chemical compatibility of ammunition components with explosives (non nuclear applications); AC/310 (SG1) D/15 (Draft edition 2) I-96 NAVY/ARMY/AIR.

  18. 18.

    Vogelsanger B. Chemical stability, compatibility and shelf life of explosives. CHIMIA Int J Chem. 2004;58(6):401–8.

    CAS  Article  Google Scholar 

  19. 19.

    Trache D, Donnot A, Khimeche K, Benelmir R, Brosse N. Physico-chemical properties and thermal stability of microcrystalline cellulose isolated from Alfa fibres. Carbohydr Polym. 2014;104:223–30.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Trache D, Khimeche K, Mezroua A, Benziane M. Physicochemical properties of microcrystalline nitrocellulose from Alfa grass fibres and its thermal stability. J Therm Anal Calorim. 2016;124(3):1485–96.

    CAS  Article  Google Scholar 

  21. 21.

    Gibson JD. Stabilizers for cross-linked composite modified double base propellants. US Patent 5,387,295; 1995.

  22. 22.

    de Barros Lima ÍP, Lima NGP, Barros DM, Oliveira TS, Mendonça CM, Barbosa EG, et al. Compatibility study between hydroquinone and the excipients used in semi-solid pharmaceutical forms by thermal and non-thermal techniques. J Therm Anal Calorim. 2015;120(1):719–32.

    Article  CAS  Google Scholar 

  23. 23.

    Li X, Lin Q-h, Peng J-h, Wang B-l. Compatibility study between 2, 6-diamino-3, 5-dinitropyrazine-1-oxide and some high explosives by thermal and nonthermal techniques. J Therm Anal Calorim. 2017;127(3):2225–31.

    CAS  Article  Google Scholar 

  24. 24.

    North Atlantic Treaty Organization, Manual of Data Requirements and Tests for the Qualification of Explosives Materials for Military Use; 2003.

  25. 25.

    Zeman S, Elbeih A, Yan Q-L. Notes on the use of the vacuum stability test in the study of initiation reactivity of attractive cyclic nitramines in the C4 matrix. J Therm Anal Calorim. 2013;112(3):1433–7.

    CAS  Article  Google Scholar 

  26. 26.

    Lu K-T, Li J-S, Yeh T-F. The study of thermal stability for the single base propellant via the accelerated aging process. J Chung Cheng Inst Tech. 2014;43:69–78.

    CAS  Google Scholar 

  27. 27.

    Trache D, Abdelaziz A, Siouani B. A simple and linear isoconversional method to determine the pre-exponential factors and the mathematical reaction mechanism functions. J Therm Anal Calorim. 2017;128(1):335–48.

    CAS  Article  Google Scholar 

  28. 28.

    Vyazovkin S, Wight CA. Estimating realistic confidence intervals for the activation energy determined from thermoanalytical measurements. Anal Chem. 2000;72(14):3171–5.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340:53–68.

    Article  Google Scholar 

  30. 30.

    Elbeih A, Abd-Elghany M, Elshenawy T. Application of vacuum stability test to determine thermal decomposition kinetics of nitramines bonded by polyurethane matrix. Acta Astronat. 2017;132:124–30.

    CAS  Article  Google Scholar 

  31. 31.

    Vyazovkin S. Isoconversional kinetics of thermally stimulated processes. Heidelberg: Springer; 2015.

    Google Scholar 

  32. 32.

    Sbirrazzuoli N. Determination of pre-exponential factors and of the mathematical functions f (α) or G (α) that describe the reaction mechanism in a model-free way. Thermochim Acta. 2013;564:59–69.

    CAS  Article  Google Scholar 

  33. 33.

    Fraunhofer-lnstitut fur Chemische Technologie I. Kinetic description of the ageing of gun and rocket propellants for the prediction of their service lifetime. Subgroup W. 1997:1.

  34. 34.

    Vyazovkin S, Wight CA. Isothermal and non-isothermal kinetics of thermally stimulated reactions of solids. Int Rev Phys Chem. 1998;17(3):407–33.

    CAS  Article  Google Scholar 

  35. 35.

    Liu R, Zhou Z, Yin Y, Yang L, Zhang T. Dynamic vacuum stability test method and investigation on vacuum thermal decomposition of HMX and CL-20. Thermochim Acta. 2012;537:13–9.

    CAS  Article  Google Scholar 

  36. 36.

    Ma S, Song G, Feng N. Preparation and characterization of self-emulsified waterborne nitrocellulose. Carbohydr Polym. 2012;89(1):36–40.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Hermann M. Microstructure of nitrocellulose investigated by X-Ray diffraction. International Annual Conference; Fraunhofer Institut for Chemische Technologie. Germany; 2011.

  38. 38.

    Quye A, Littlejohn D, Pethrick RA, Stewart RA. Investigation of inherent degradation in cellulose nitrate museum artefacts. Polym Degrad Stab. 2011;96(7):1369–76.

    CAS  Article  Google Scholar 

  39. 39.

    Pourmortazavi S, Hosseini S, Rahimi-Nasrabadi M, Hajimirsadeghi S, Momenian H. Effect of nitrate content on thermal decomposition of nitrocellulose. J Hazar Mater. 2009;162(2–3):1141–4.

    CAS  Article  Google Scholar 

  40. 40.

    Luo Q, Ren T, Shen H, Zhang J, Liang D. The thermal properties of nitrocellulose: from thermal decomposition to thermal explosion. Comb Sci Technol. 2018;190(4):579–90.

    CAS  Article  Google Scholar 

  41. 41.

    Wei R, Huang S, Wang Z, Wang C, Zhou T, He J, et al. Effect of plasticizer dibutyl phthalate on the thermal decomposition of nitrocellulose. J Therm Anal Calorim. 2018;134(2):953–69.

    CAS  Article  Google Scholar 

  42. 42.

    Krabbendam-La Haye E, de Klerk W, Miszczak M, Szymanowski J. Compatibility testing of energetic materials at TNO-PML and MIAT. J Therm Anal Calorim. 2003;72(3):931–42.

    CAS  Article  Google Scholar 

  43. 43.

    Liavitskaya T, Guigo N, Sbirrazzuoli N, Vyazovkin S. Further insights into the kinetics of thermal decomposition during continuous cooling. Phys Chem Chem Phys. 2017;19(29):18836–44.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Lin C-P, Chang Y-M, Gupta JP, Shu C-M. Comparisons of TGA and DSC approaches to evaluate nitrocellulose thermal degradation energy and stabilizer efficiencies. Pro Saf Environ Pro. 2010;88(6):413–9.

    CAS  Article  Google Scholar 

  45. 45.

    Luo L, Jin B, Xiao Y, Zhang Q, Chai Z, Huang Q, et al. Study on the isothermal decomposition kinetics and mechanism of nitrocellulose. Polym Test. 2019;75:337–43.

    CAS  Article  Google Scholar 

  46. 46.

    Tompa AS, Bryant WF Jr. Microcalorimetry and DSC study of the compatibility of energetic materials. Thermochim Acta. 2001;367:433–41.

    Article  Google Scholar 

  47. 47.

    Barrie PJ, Pittas CA, Mitchell MJ, Wilson DI. A critical analysis of the compensation effect and its application to heat exchanger fouling studies. Heat Transf Eng. 2013;34(8–9):744–52.

    CAS  Article  Google Scholar 

  48. 48.

    Bennett CA, Kistler RS, Nangia K, Al-Ghawas W, Al-Hajji N, Al-Jemaz A. Observation of an isokinetic temperature and compensation effect for high-temperature crude oil fouling. Heat Transf Eng. 2009;30(10–11):794–804.

    CAS  Article  Google Scholar 

  49. 49.

    Cornish-Bowden A. Enthalpy–entropy compensation and the isokinetic temperature in enzyme catalysis. J Biosci. 2017;42(4):665–70.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Salim Chelouche or Djalal Trache.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15001 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chelouche, S., Trache, D., Tarchoun, A.F. et al. Compatibility of nitrocellulose with aniline-based compounds and their eutectic mixtures. J Therm Anal Calorim 141, 941–955 (2020). https://doi.org/10.1007/s10973-019-09048-0

Download citation

Keywords

  • Nonthermal techniques
  • STANAG 4147
  • DSC
  • VST
  • Kinetics
  • Storage lifetime
  • Stability tests