Natural convection of a non-Newtonian ferrofluid in a porous elliptical enclosure in the presence of a non-uniform magnetic field

Abstract

In the present study, laminar natural convection of a non-Newtonian ferrofluid inside an elliptical porous cavity was numerically simulated in the presence of a non-uniform external magnetic field. This natural convection problem was relevant to the cooling of micro-sized electronic devices. The well-known finite volume method was employed to discretize the governing equations for ferrofluid flow under the effect of an external magnetic field. The effects of pertinent non-dimensional numbers including the Rayleigh number, the magnetic number, the power-law index, and the Darcy number were studied on the flow pattern and the heat transfer rate of the non-Newtonian ferrofluid. The results showed that by applying the magnetic field by a wire, the overall heat transfer rate increased significantly. Moreover, to achieve the maximum heat transfer enhancement, the wire should have been placed at the center of the elliptical walls of the enclosure. It was also shown that the impact of the power-law index on the heat transfer rate was considerable, and using a shear-thinning liquid increased the average Nusselt number in the porous elliptical enclosure.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Abbreviations

a :

Large inner ellipse radius

b :

Small inner ellipse radius

\(\vec{B}\) :

Magnetic induction

C :

Consistency index (Nsn m−2)

C P :

Specific heat capacity (J kg−1 K−1)

C d :

Inertia coefficient of porous media

d :

Outer ellipse radius

Da:

Darcy number

D ij :

Rate of deformation tensor

g :

Gravitational acceleration (ms−2)

\(\vec{H}\) :

Magnetic field vector (A m−1)

I :

Electrical intensity (A)

L :

Reference length (m)

m :

Consistency index

Mn:

Magnetic non-dimensional number

n :

Power-law index

Nu:

Nusselt number

P :

Pressure (Pa)

Pr:

Prandtl number

Ra:

Rayleigh number

\(\vec{u},\,\vec{v}\) :

Velocity vector components (m s−1)

x, y :

Cartesian coordinates (m)

α :

Thermal diffusivity (m2 s−1)

θ :

Non-dimensional temperature

ν :

Kinematic viscosity (m2 s−1)

μ :

Dynamic viscosity (kg m−1 s−1)

μ 0 :

Magnetic permeability in a vacuum (= 4π × 10−7 T m A−1)

χ :

Magnetic susceptibility

β :

Thermal expansion coefficient (1 K−1)

ρ :

Density (kg m−3)

φ :

Solid volume fraction

κ :

Permeability of porous medium (m2)

τ :

Shear stress (Pa)

ε :

Porosity

λ :

Thermal conductivity (W m−1 K−1)

avg:

Average

c:

Cold

eff:

Effective (porous media)

f:

Base fluid

h:

Hot

nf:

Mixture (nanofluid)

p:

Particle

w:

Wall

References

  1. 1.

    Yu S-H, Lee K-S, Yook S-J. Natural convection around a radial heat sink. Int J Heat Mass Transf. 2010;53(13–14):2935–8.

    Google Scholar 

  2. 2.

    Dondapati RS, et al. Computational prediction of pressure drop and heat transfer with cryogen based nanofluids to be used in micro-heat exchangers. Int J Mech Sci. 2017;130:133–42.

    Google Scholar 

  3. 3.

    Nield DA, Bejan A. Convection in porous media, vol. 3. Berlin: Springer; 2006.

    Google Scholar 

  4. 4.

    Gangawane KM, Gupta S. Mixed convection characteristics in rectangular enclosure containing heated elliptical block: effect of direction of moving wall. Int J Therm Sci. 2018;130:100–15.

    Google Scholar 

  5. 5.

    Dogonchi AS, et al. Natural convection analysis in a cavity with an inclined elliptical heater subject to shape factor of nanoparticles and magnetic field. Arab J Sci Eng. 2019;44(9):7919–31.

    CAS  Google Scholar 

  6. 6.

    Sheikholeslami M, et al. A study of natural convection heat transfer in a nanofluid filled enclosure with elliptic inner cylinder. Int J Numer Meth Heat Fluid Flow. 2014;24(8):1906–27.

    Google Scholar 

  7. 7.

    Sheikholeslami M, Hayat T, Alsaedi A. On simulation of nanofluid radiation and natural convection in an enclosure with elliptical cylinders. Int J Heat Mass Transf. 2017;115:981–91.

    CAS  Google Scholar 

  8. 8.

    Ramezanpour M, Siavashi M. Application of SiO2–water nanofluid to enhance oil recovery. J Therm Anal Calorim. 2019;135(1):565–80.

    CAS  Google Scholar 

  9. 9.

    Xuan Y, Li Q. Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow. 2000;21(1):58–64.

    CAS  Google Scholar 

  10. 10.

    Mahian O, et al. Recent advances in modeling and simulation of nanofluid flows-Part I: fundamentals and theory. Phys Rep. 2019;790:1–48.

    CAS  Google Scholar 

  11. 11.

    Mahian O, et al. Recent advances in modeling and simulation of nanofluid flows—Part II: applications. Phys Rep. 2019;791:1–59.

    CAS  Google Scholar 

  12. 12.

    Roy NC. Natural convection of nanofluids in a square enclosure with different shapes of inner geometry. Phys Fluids. 2018;30(11):113605.

    Google Scholar 

  13. 13.

    Abu-Nada E, Masoud Z, Hijazi A. Natural convection heat transfer enhancement in horizontal concentric annuli using nanofluids. Int Commun Heat Mass Transf. 2008;35(5):657–65.

    CAS  Google Scholar 

  14. 14.

    Aminossadati SM, Ghasemi B. Enhanced natural convection in an isosceles triangular enclosure filled with a nanofluid. Comput Math Appl. 2011;61(7):1739–53.

    Google Scholar 

  15. 15.

    Ho CJ, et al. Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study. Int J Therm Sci. 2010;49(8):1345–53.

    CAS  Google Scholar 

  16. 16.

    Garmroodi MD, Ahmadpour A, Talati F. MHD mixed convection of nanofluids in the presence of multiple rotating cylinders in different configurations: a two-phase numerical study. Int J Mech Sci. 2019;150:247–64.

    Google Scholar 

  17. 17.

    Selimefendigil F, Öztop HF. Conjugate mixed convection of nanofluid in a cubic enclosure separated with a conductive plate and having an inner rotating cylinder. Int J Heat Mass Transf. 2019;139:1000–17.

    CAS  Google Scholar 

  18. 18.

    Selimefendigil F, Öztop HF. Analysis and predictive modeling of nanofluid-jet impingement cooling of an isothermal surface under the influence of a rotating cylinder. Int J Heat Mass Transf. 2018;121:233–45.

    CAS  Google Scholar 

  19. 19.

    Ghasemi K, Siavashi M. Three-dimensional analysis of magnetohydrodynamic transverse mixed convection of nanofluid inside a lid-driven enclosure using MRT-LBM. Int J Mech Sci. 2020;165:105199.

    Google Scholar 

  20. 20.

    Siavashi M, et al. Numerical analysis of mixed convection of two-phase non-Newtonian nanofluid flow inside a partially porous square enclosure with a rotating cylinder. J Therm Anal Calorim. 2019;137(1):267–87.

    CAS  Google Scholar 

  21. 21.

    Bozorg MV, Siavashi M. Two-phase mixed convection heat transfer and entropy generation analysis of a non-Newtonian nanofluid inside a cavity with internal rotating heater and cooler. Int J Mech Sci. 2019;151:842–57.

    Google Scholar 

  22. 22.

    Siavashi M, Rostami A. Two-phase simulation of non-Newtonian nanofluid natural convection in a circular annulus partially or completely filled with porous media. Int J Mech Sci. 2017;133:689–703.

    Google Scholar 

  23. 23.

    Sheikholeslami M, Ganji DD. External magnetic field effects on hydrothermal treatment of nanofluid: numerical and analytical studies. Amsterdam: William Andrew; 2016.

    Google Scholar 

  24. 24.

    Selimefendigil F, Öztop HF. Numerical study and POD-based prediction of natural convection in a ferrofluids-filled triangular cavity with generalized neural networks. Numer Heat Transf Part A Appl. 2015;67(10):1136–61.

    Google Scholar 

  25. 25.

    Nakatsuka K, et al. The magnetic fluid for heat transfer applications. J Magn Magn Mater. 2002;252:360–2.

    CAS  Google Scholar 

  26. 26.

    Shuchi S, Sakatani K, Yamaguchi H. An application of a binary mixture of magnetic fluid for heat transport devices. J Magn Magn Mater. 2005;289:257–9.

    CAS  Google Scholar 

  27. 27.

    Selimefendigil F, Chamkha AJ. Magnetohydrodynamics mixed convection in a lid-driven cavity having a corrugated bottom wall and filled with a non-Newtonian power-law fluid under the influence of an inclined magnetic field. J Therm Sci Eng Appl. 2016;8(2):021023.

    Google Scholar 

  28. 28.

    Selimefendigil F, Öztop HF. Forced convection in a branching channel with partly elastic walls and inner L-shaped conductive obstacle under the influence of magnetic field. Int J Heat Mass Transf. 2019;144:118598.

    Google Scholar 

  29. 29.

    Selimefendigil F, Öztop HF. MHD Pulsating forced convection of nanofluid over parallel plates with blocks in a channel. Int J Mech Sci. 2019;157–158:726–40.

    Google Scholar 

  30. 30.

    Moraveji MK, Hejazian M. Natural convection in a rectangular enclosure containing an oval-shaped heat source and filled with Fe3O4/water nanofluid. Int Commun Heat Mass Transf. 2013;44:135–46.

    Google Scholar 

  31. 31.

    Kefayati GHR. Natural convection of ferrofluid in a linearly heated cavity utilizing LBM. J Mol Liq. 2014;191:1–9.

    CAS  Google Scholar 

  32. 32.

    Selimefendigil F, Öztop HF, Al-Salem K. Natural convection of ferrofluids in partially heated square enclosures. J Magn Magn Mater. 2014;372:122–33.

    CAS  Google Scholar 

  33. 33.

    Joubert J, et al. Enhancement in heat transfer of a ferrofluid in a differentially heated square cavity through the use of permanent magnets. J Magn Magn Mater. 2017;443:149–58.

    CAS  Google Scholar 

  34. 34.

    Sun X-H, et al. Natural convection and anisotropic heat transfer in a ferro-nanofluid under magnetic field. Int J Heat Mass Transf. 2019;133:581–95.

    CAS  Google Scholar 

  35. 35.

    Maghsoudi P, Siavashi M. Application of nanofluid and optimization of pore size arrangement of heterogeneous porous media to enhance mixed convection inside a two-sided lid-driven cavity. J Therm Anal Calorim. 2019;135(2):947–61.

    CAS  Google Scholar 

  36. 36.

    Siavashi M, Miri Joibary SM. Numerical performance analysis of a counter-flow double-pipe heat exchanger with using nanofluid and both sides partly filled with porous media. J Therm Anal Calorim. 2019;135(2):1595–610.

    CAS  Google Scholar 

  37. 37.

    Siavashi M, Rasam H, Izadi A. Similarity solution of air and nanofluid impingement cooling of a cylindrical porous heat sink. J Therm Anal Calorim. 2019;135(2):1399–415.

    CAS  Google Scholar 

  38. 38.

    Chamkha AJ, Selimefendigil F, Ismael MA. Mixed convection in a partially layered porous cavity with an inner rotating cylinder. Numer Heat Transf Part A Appl. 2016;69(6):659–75.

    Google Scholar 

  39. 39.

    Selimefendigil F, Öztop HF. Magnetic field effects on the forced convection of CuO-water nanofluid flow in a channel with circular cylinders and thermal predictions using ANFIS. Int J Mech Sci. 2018;146–147:9–24.

    Google Scholar 

  40. 40.

    Javed T, Mehmood Z, Abbas Z. Natural convection in square cavity filled with ferrofluid saturated porous medium in the presence of uniform magnetic field. Physica B. 2017;506:122–32.

    CAS  Google Scholar 

  41. 41.

    Astanina MS, et al. MHD natural convection and entropy generation of ferrofluid in an open trapezoidal cavity partially filled with a porous medium. Int J Mech Sci. 2018;136:493–502.

    Google Scholar 

  42. 42.

    Gibanov NS, et al. Effect of uniform inclined magnetic field on natural convection and entropy generation in an open cavity having a horizontal porous layer saturated with a ferrofluid. Numer Heat Transf Part A Appl. 2017;72(6):479–94.

    CAS  Google Scholar 

  43. 43.

    Pekmen Geridonmez B, Oztop HF. Natural convection in a cavity filled with porous medium under the effect of a partial magnetic field. Int J Mech Sci. 2019;161-162:105077.

    Google Scholar 

  44. 44.

    Ghasemian M, et al. Heat transfer characteristics of Fe3O4 ferrofluid flowing in a mini channel under constant and alternating magnetic fields. J Magn Magn Mater. 2015;381:158–67.

    CAS  Google Scholar 

  45. 45.

    Nithiarasu P, Seetharamu K, Sundararajan T. Natural convective heat transfer in a fluid saturated variable porosity medium. Int J Heat Mass Transf. 1997;40(16):3955–67.

    CAS  Google Scholar 

  46. 46.

    Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. Int J Heat Mass Transf. 2003;46(19):3639–53.

    CAS  Google Scholar 

  47. 47.

    Brinkman H. The viscosity of concentrated suspensions and solutions. J Chem Phys. 1952;20(4):571–81.

    CAS  Google Scholar 

  48. 48.

    Maxwell JC. A treatise on electricity and magnetism, vol. 314. Oxford: Clarendon; 1881. p. 1873.

    Google Scholar 

  49. 49.

    Scarpa F, Smith FC. Passive and MR fluid-coated auxetic PU foam—mechanical, acoustic, and electromagnetic properties. J Intell Mater Syst Struct. 2004;15(12):973–9.

    CAS  Google Scholar 

  50. 50.

    Ganguly R, Sen S, Puri IK. Heat transfer augmentation using a magnetic fluid under the influence of a line dipole. J Magn Magn Mater. 2004;271(1):63–73.

    CAS  Google Scholar 

  51. 51.

    Khezzar L, Siginer D, Vinogradov I. Natural convection of power law fluids in inclined cavities. Int J Therm Sci. 2012;53:8–17.

    Google Scholar 

  52. 52.

    Minakov AV, Rudyak VY, Pryazhnikov MI. About rheology of nanofluids. In: AIP Conference Proceedings. AIP Publishing; 2018.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Ahmadpour.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Daneshvar Garmroodi, M.R., Ahmadpour, A., Hajmohammadi, M.R. et al. Natural convection of a non-Newtonian ferrofluid in a porous elliptical enclosure in the presence of a non-uniform magnetic field. J Therm Anal Calorim 141, 2127–2143 (2020). https://doi.org/10.1007/s10973-019-09045-3

Download citation

Keywords

  • Ferrofluid
  • Porous media
  • Non-Newtonian fluid
  • Magnetic field
  • Natural convection