Effect of the chimney design on the thermal characteristics in solar chimney power plant

Abstract

Solar chimney power plant (SCPP) is an interesting project to produce clean and sustainable energy. An efficient SCPP system requires a very high chimney, and thus the optimization of the chimney shape presents an important way to enhance the SCPP performance. The aim of this paper is to analyze the effect of the divergent chimney shape on the airflow behavior inside SCPP. A comparison between four chimney shapes is carried out using CFD method: two cylindrical chimneys with different diameters and two divergent chimneys with different shapes. Indeed, both parameters were studied: the ratio of the inlet and outlet diameter of the chimney and the shape of the chimney which both hyperboloid and conical. The SCPP prototype was tested numerically and experimentally to validate the present computational outcomes. The obtained results confirm that the divergence shape affects directly the efficiency of the SCPP system. Moreover, the hyperboloid chimney presents the efficient solution which produces an important power output with keeping the chimney height constant.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Abbreviations

A c :

Collector area (m2)

A i :

Area of the chimney entrance section

A o :

Area of the chimney exit section (m2)

c p :

Specific heat capacity of the air (J kg−1)

D 1 :

Inlet chimney diameter (m)

D 2 :

Outlet chimney diameter (m)

h :

Convection heat transfer (W m−2 K−1)

H ch :

Chimney height (m)

k :

Turbulent kinetic energy (m2 s−2)

\(\dot{m}\) :

Masse flow rate (kg s−1)

p :

Static pressure (Pa)

P po :

Potential power output (W)

Pr:

Prandtl number

r :

Radial coordinate (m)

T :

Temperature (K)

T 0 :

Ambient temperature (K)

T s :

Sky temperature (K)

u :

Radial velocity (m s−1)

V :

Air velocity (m s−1)

v ch :

Air velocity at the chimney entrance (m s−1)

v out :

Air velocity at the chimney exit (m s−1)

w :

Axial velocity (m s−1)

z :

Axial coordinate (m)

β :

Thermal expansion coefficient (K−1)

ΔT :

Temperature rise in the collector (K)

Δp :

Pressure drop in the chimney (Pa)

ε :

Dissipation rate of turbulent kinetic energy (m2 s−3)

λ :

Thermal conductivity of the air (W m−1 K−1)

μ :

Dynamic viscosity (Pa s−1)

μ t :

Turbulent viscosity (Pa s−1)

ρ :

Density of the air (kg m−3)

ρ 0 :

Reference density (kg m−3)

ρ ch :

Density at the chimney entrance (kg m−3)

η c :

Collector efficiency

η ch :

Chimney efficiency

References

  1. 1.

    Ammar AA, Sopian K, Alghoul MA, et al. J Therm Anal Calorim. 2019;136:79. https://doi.org/10.1007/s10973-018-7741-6.

    CAS  Article  Google Scholar 

  2. 2.

    Rajendran DR, Ganapathy Sundaram E, Jawahar P, et al. J Therm Anal Calorim. 2019. https://doi.org/10.1007/s10973-019-08759-8.

    Article  Google Scholar 

  3. 3.

    Haaf W. Solar chimneys: part ii: preliminary test results from the Manzanares pilot plant. Int J Sustain Energy. 1984;2(2):141–61.

    Google Scholar 

  4. 4.

    Cottam PJ, Duffour P, Lindstrand P, Fromme P. Effect of canopy profile on solar thermal chimney performance. Sol Energy. 2016;129:286–96.

    Article  Google Scholar 

  5. 5.

    Dehghani S, Mohammadi AH. Optimum dimension of geometric parameters of solar chimney power plants–A multi-objective optimization approach. Sol Energy. 2014;105:603–12.

    Google Scholar 

  6. 6.

    Fasel HF, Meng F, Shams E, Gross A. CFD analysis for solar chimney power plants. Sol Energy. 2013;98:12–22.

    Google Scholar 

  7. 7.

    Li J, Guo H, Huang S. Power generation quality analysis and geometric optimization for solar chimney power plants. Sol Energy. 2016;139:228–37.

    Google Scholar 

  8. 8.

    Nasraoui H, Ayadi A, Bouabidi A, Driss Z, Kchaou H. Influence of the collector concavity on the airflow behavior within solar chimney power plant. Int J Green Energy. 2019;1–9.

  9. 9.

    Haaf W, Friedrich K, Mayr G, Schlaich J. Solar chimneys part I: principle and construction of the pilot plant in Manzanares. Int J Solar Energy. 1983;2(1):3–20.

    Google Scholar 

  10. 10.

    Bernardes MDS, Voß A, Weinrebe G. Thermal and technical analyses of solar chimneys. Solar Energy. 2003;75(6):511–24.

    Article  Google Scholar 

  11. 11.

    Nasraoui H, Driss Z, Ayedi A, Kchaou H. Numerical and experimental study of the aerothermal characteristics in solar chimney power plant with hyperbolic chimney shape. Arab J Sci Eng. 2019;44:7491–504.

    Article  Google Scholar 

  12. 12.

    Nasraoui H, Driss Z, Ayedi A, Bouabidi A, Kchaou H. Numerical and experimental study of the impact of conical chimney angle on the thermodynamic characteristics of a solar chimney power plant. Proc Inst Mech Eng Part E J Process Mech Eng. 2019;233:1185–99.

    Article  Google Scholar 

  13. 13.

    Ayadi A, Bouabidi A, Driss Z, Abid MS. Experimental and numerical analysis of the collector roof height effect on the solar chimney performance. Renew Energy. 2017;115:649–62.

    Article  Google Scholar 

  14. 14.

    Ayadi A, Driss Z, Bouabidi A, Abid MS. Experimental and numerical study of the impact of the collector roof inclination on the performance of a solar chimney power plant. Energy Build. 2017;139:263–76.

    Article  Google Scholar 

  15. 15.

    Nasraoui H, Driss Z, Kchaou H. Novel collector design for enhancing the performance of solar chimney power plant. Renew Energy. 145(2020):1658–1671.

  16. 16.

    Ayadi A, Driss Z, Bouabidi A, Nasraoui H, Bsisa M, Abid MS. A computational and an experimental study on the effect of the chimney height on the thermal characteristics of a solar chimney power plant. Proc Inst Mech Eng Part E J Process Mech Eng. 2017;232:0954408917719776.

    Google Scholar 

  17. 17.

    Li J-y, Guo P-h, Wang Y. Effects of collector radius and chimney height on power output of a solar chimney power plant with turbines. Renew Energy. 2012;47:21–8.

    Article  Google Scholar 

  18. 18.

    Mehta DB, Arunkumar H, Hiremath P, Shettar M. Numerical analysis on effect of chimney height on solar updraft power plant. 2016.

  19. 19.

    Zhou X, Yang J, Xiao B, Hou G, Xing F. Analysis of chimney height for solar chimney power plant. Appl Therm Eng. 2009;29(1):178–85.

    Article  Google Scholar 

  20. 20.

    Kasaeian A, Ghalamchi M, Ghalamchi M. Simulation and optimization of geometric parameters of a solar chimney in Tehran. Energy Convers Manag. 2014;83:28–34.

    Google Scholar 

  21. 21.

    Das P, Chandramohan VP. Effect of chimney height and collector roof angle on flow parameters of solar updraft tower (SUT) plant. J Therm Anal Calorim. 2019;136(1):133–45.

    CAS  Google Scholar 

  22. 22.

    Hu S, Leung DY, Chan JC. Impact of the geometry of divergent chimneys on the power output of a solar chimney power plant. Energy. 2017;120:1–11.

    Google Scholar 

  23. 23.

    Hu S, Leung DYC. Mathematical modelling of the performance of a solar chimney power plant with divergent chimneys. Energy Procedia. 2017;110:440–5.

    Google Scholar 

  24. 24.

    Shirvan KM, Mirzakhanlari S, Mamourian M, Abu-Hamdeh N. Numerical investigation and sensitivity analysis of effective parameters to obtain potential maximum power output: a case study on Zanjan prototype solar chimney power plant. Energy Convers Manag. 2017;136:350–60.

    Google Scholar 

  25. 25.

    Yaswanthkumar A, Chandramohan VP. Numerical analysis of flow parameters on solar updraft tower (SUT) with and without thermal energy storage (TES) system. J Therm Anal Calorim. 2019;136(1):331–43.

    CAS  Google Scholar 

  26. 26.

    Ayadi A, Bouabidi A, Driss Z, Abid M. Study of the meshing effect on the flow characteristics inside a SCPP. Handbook on Navier-Stokes equations: Theory and applied analysis. 2016:143–58.

  27. 27.

    Fathi N, Aleyasin SS, Vorobieff P. Numerical–analytical assessment on Manzanares prototype. Appl Therm Eng. 2016;102:243–50.

    Google Scholar 

  28. 28.

    Schlaich JR, Bergermann R, Schiel W, Weinrebe G. Design of commercial solar updraft tower systems—utilization of solar induced convective flows for power generation. J Solar Energy Eng. 2005;127(1):117–24.

    Google Scholar 

  29. 29.

    Padki M, Sherif S. On a simple analytical model for solar chimneys. Int J Energy Res. 1999;23(4):345–9.

    CAS  Google Scholar 

  30. 30.

    Chergui T, Larbi S, Bouhdjar A. Modelling and simulation of solar chimney power plant performances in southern region of Algeria. Conference Modelling and simulation of solar chimney power plant performances in southern region of Algeria. IEEE, p. 1–5.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Haythem Nasraoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nasraoui, H., Driss, Z. & Kchaou, H. Effect of the chimney design on the thermal characteristics in solar chimney power plant. J Therm Anal Calorim 140, 2721–2732 (2020). https://doi.org/10.1007/s10973-019-09037-3

Download citation

Keywords

  • Solar energy
  • Solar chimney power plant
  • CFD
  • Chimney shape
  • Hyperboloid