TG-FTIR coupled analysis to predetermine effective precursors for laser-activated and electroless metallized materials

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


Copper compounds can be used as additives to elaborate polymer materials, which after laser-induced ablation can be directly metallized on the irradiated surface area. In this work, three [Cu(l-tyr)2]n (l-tyr = l-tyrosine) (A), [Cu(bpy)3][CrO4]·7.5H2O (bpy = 2,2′-bipyridine) (B) and [Cu(bpy)2(O2SO2)]·CH3OH (C) copper(II) complexes were evaluated. The complexes were mixed at 20 mass% with polyurethane resin to form the coatings. The coatings were irradiated with ArF excimer laser and electroless metallized. It was found that only complex A was effective metallization precursors. Thermal properties of the copper(II) complexes were considered as crucial for defining effective precursors. TG-FTIR coupled analysis was applied to predetermine thermal properties of the compounds, which can be responsible for effective metallization. It was found that the main reason for unsuccessful metallization of the coatings containing complexes B or C was release of lattice H2O or CH3OH molecules in crystal structures, respectively, which affected ablation of the coatings. Appropriate model of laser ablation was also proposed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12


  1. 1.

    Moraczewski K. Effect of metallization time on thermal stability of copper-plated polylactide. J Therm Anal Calorim. 2017;129:16971703.

    Article  Google Scholar 

  2. 2.

    Yan Y, Warren SC, Fuller P, Grzybowski BA. Chemoelectronic circuits based on metal nanoparticles. Nat Nanotechnol. 2016;11:603–8.

    CAS  Article  Google Scholar 

  3. 3.

    Rytlewski P, Jagodziński B, Moraczewski K. Laser-assisted electroless metallization of polymer materials: a critical review. Rev Adhes Adhes. 2016;4:334–66.

    CAS  Article  Google Scholar 

  4. 4.

    Charbonnier M, Romand M, Goepfert Y, Leonard D, Bessuueille F, Bouadi M. Palladium (+ 2) reduction: a key step for the electroless Ni metallization of insulating substrates by a tin-free process. Thin Solid Films. 2006;515:1623–33.

    CAS  Article  Google Scholar 

  5. 5.

    Bhansali S, Sood DK. A novel technique for fabrication of metallic structures on polyimide by selective electroless copper plating using ion implantation. Thin Solid Films. 1995;270:489–92.

    CAS  Article  Google Scholar 

  6. 6.

    Yu ZJ, Kang ET, Neoh KG. Electroless plating of copper on polyimide films modified by surface grafting of tertiary and quaternary amines polymers. Polymer. 2002;43:4137–46.

    CAS  Article  Google Scholar 

  7. 7.

    Bachy B, Franke J. Experimental investigation and optimization for the effective parameters in the laser direct structuring process. J Laser Micro Nanoeng. 2015;10:202–9.

    CAS  Article  Google Scholar 

  8. 8.

    Yang JY, Cho JH, Yoo MJ. Selective metallization on copper aluminate composite via laser direct structuring technology. Compos B. 2017;110:361–7.

    CAS  Article  Google Scholar 

  9. 9.

    Ratautas K, Gedvilas M, Stankeviciene I, Jagminiene A, Norkus E, Raciukaitis G, Sinopoli S, Emanuele U, Pira NL. Laser-induced selective metal plating on PP and PC/ABS polymers surface. In: Proceedings of the IEEE. 2016. p. 7738925.

  10. 10.

    Hanus F, Kolev K, Jadin A, Laude LD. Excimer laser-induced copper nanocluster formation in mixed PMMA/copper acetylacetonate films. Appl Surf Sci. 2000;154–155:320–3.

    Article  Google Scholar 

  11. 11.

    Charbonnier M, Romand M, Esrom H, Seeböck R. Functionalization of polymer surfaces using excimer VUV systems and silent discharges. Application to electroless metallization. J Adhes. 2001;75:381–404.

    CAS  Article  Google Scholar 

  12. 12.

    Charbonnier M, Romand M, Goepfert Y, Leonard D, Bouadi M. Copper metallization of polymers by a palladium-free electroless process. Surf Coat Technol. 2006;200:5478–86.

    CAS  Article  Google Scholar 

  13. 13.

    Charbonnier M, Romand M, Goepfert Y. Ni direct electroless metallization of polymers by a new palladium-free process. Surf Coat Technol. 2006;200:5028–36.

    CAS  Article  Google Scholar 

  14. 14.

    Rytlewski P, Bahners T, Polewski F, Gebert B, Gutmann JS, Hartmann N, Hagemann U, Moraczewski K. Laser-induced surface activation of biocomposites for electroless metallization. Surf Coat Technol. 2017;311:104–12.

    CAS  Article  Google Scholar 

  15. 15.

    Huske M, J. Kickelhain, Muller J, Esser G. Laser supported activation and additive metallization of thermoplastics for 3D-MIDs. In: Proceedings of LANE. 2001.

  16. 16.

    Ratautasa K, Gedvilasa M, Stankeviciene I, Jagminiene A, Norkus E, Pira N, Sinopoli S, Raciukaitis G. Laser-induced selective metallization of polypropylene doped with multiwall carbon nanotubes. Appl Surf Sci. 2017;412:319–26.

    Article  Google Scholar 

  17. 17.

    Gedvilas M, Ratautas K, Jagminiene A, Stankeviciene I, Pira N, Sinopoli S, Kacar E, Norkus E, Raciukaitis G. Percolation effect of a Cu layer on a MWCNT/PP nanocomposite substrate after laser direct structuring and autocatalytic plating. RSC Adv. 2018;8:30305–9.

    CAS  Article  Google Scholar 

  18. 18.

    Rytlewski P, Mróz W, Budner B, Moraczewski K, Malinowski R, Jagodziński B. Application of thermogravimetry in the assessment of coatings ability to be metallized. J Therm Anal Calorim. 2017;127:381–7.

    CAS  Article  Google Scholar 

  19. 19.

    Wojciechowska A, Daszkiewicz M, Bieńko A. Polymeric Zn(II) and Cu(II) complexes with exobidentate bridging l-tyrosine: synthesis, structural and spectroscopic properties. Polyhedron. 2009;28:1481–9.

    CAS  Article  Google Scholar 

  20. 20.

    Wojciechowska A, Pietraszko A, Bronowska W, Staszak Z, Jezierska J, Cieślak-Golonka M. Geometric distortions of octahedral cations and tetrahedral anions in disordered [Cu(bpy)3]CrO4·7.5H2O crystal—a comparative study. Polyhedron. 2010;29:2574–81.

    CAS  Article  Google Scholar 

  21. 21.

    Wojciechowska A, Jezierska J, Bieńko A, Daszkiewicz M. Structural and spectroscopic parameters of distortion in [Cu(bpy)2(O2SO2)]·CH3OH and [Cu(bpy)3][SO4]·7.5H2O—synthesis, crystal structure, spectroscopic and magnetic properties. Polyhedron. 2011;30:1547–54.

    CAS  Article  Google Scholar 

  22. 22.

    Sanoop AP, Rajeev R, George BK. Synthesis and characterization of a novel copper chromite catalyst for the thermal decomposition of ammonium perchlorate. Thermochim Acta. 2015;606:34–40.

    CAS  Article  Google Scholar 

  23. 23.

    Dyer PE. Excimer laser polymer ablation: twenty years on. Appl Phys A. 2003;77:167–73.

    CAS  Article  Google Scholar 

  24. 24.

    Vogel A, Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chem Rev. 2003;103:577–644.

    CAS  Article  Google Scholar 

Download references


This work has been financed from the funds of the National Centre of Science granted upon decision DEC-2013/11/D/ST8/03423.

Author information



Corresponding author

Correspondence to Piotr Rytlewski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rytlewski, P., Jagodziński, B., Wojciechowska, A. et al. TG-FTIR coupled analysis to predetermine effective precursors for laser-activated and electroless metallized materials. J Therm Anal Calorim 141, 697–705 (2020).

Download citation


  • Copper(II) complexes
  • TG-FTIR coupled analysis
  • Polymer coating
  • Laser modification
  • Electroless metallization