Edible vegetable oils enriched with carotenoids extracted from by-products of sea buckthorn (Hippophae rhamnoides ssp. sinensis): the investigation of some characteristic properties, oxidative stability and the effect on thermal behaviour


In the recent years, it has been granted a growing interest to the substitution of synthetic food antioxidants by natural ones, while a special attention was directed to their extraction from the by-products of the food industry. Sea buckthorn (Hippophae rhamnoides) by-products are promising sources of bioactive compounds that could be used for their favourable nutritional and functional properties. In this study, ultrasound-assisted extraction and maceration have been used for the direct enrichment of three edible oils (refined sunflower oil, cold-pressed sunflower oil and extra virgin olive oil) with carotenoids from dried sea buckthorn by-products. Total carotenoids content and ABTS free radical scavenger activity of both enriched and commercial oils were determined by spectrophotometric methods, and the colour was evaluated according to the CIELab colour space. The oxidative stability of vegetable oils containing the extracted carotenoids was assessed in terms of peroxide value, while the thermal stability of the oils was evaluated by thermogravimetry and by differential scanning calorimetry. It was shown that the ultrasound-assisted extraction was more effective than the maceration for the extraction of carotenoids from dried sea buckthorn by-products. ABTS radical scavenging activity has been slightly improved for all the oils studied after carotenoid enrichment, while the oxidative stability increased in extra virgin olive oil but decreased in unrefined and refined sunflower oils. Extraction of sea buckthorn by-products significantly (P < 0.05) reduced lightness and increased redness and yellowness of the oils.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Iqbal S, Bhanger MI. Stabilization of sunflower oil by garlic extract during accelerated storage. Food Chem. 2007;100:246–54.

    CAS  Google Scholar 

  2. 2.

    Salta FN, Mylona A, Chiou A, Boskou G, Andrikopoulos NK. Oxidative stability of edible vegetable oils enriched in polyphenols with olive leaf extract. Food Sci Technol Int. 2007;13(6):413–21.

    CAS  Google Scholar 

  3. 3.

    Pardauil JJR, de Molfetta FA, Braga M, de Souza LKC, Filho GNR, Zamian JR, da Costa CEF. Characterization, thermal properties and phase transitions of amazonian vegetable oils. J Therm Anal Calorim. 2017;127:1221–9.

    CAS  Google Scholar 

  4. 4.

    Benakmoum A, Abbeddou S, Ammouche A, Kefalas P, Gerasopoulos D. Valorisation of low quality edible oil with tomato peel waste. Food Chem. 2008;110:684–90.

    CAS  Google Scholar 

  5. 5.

    Zhang Y, Yang L, Zu YG, Chen XQ, Wang FJ, Liu F. Oxidative stability of sunflower oil by carnosic acid compared with synthetic antioxidants during accelerated storage. Food Chem. 2010;118:656–62.

    CAS  Google Scholar 

  6. 6.

    Jinyoung L, Yoosung L, Eunok C. Effects of sesamol, sesamin, and sesamolin extracted from roasted sesame oil on the thermal oxidation of methyl linoleate. LWT-Food Sci Technol. 2008;41:1871–5.

    Google Scholar 

  7. 7.

    Mohdaly AAA, Sarhan MA, Smetanska I, Mahmoud A. Antioxidant properties of various solvent extracts of potato peels, sugar beet pulp, and sesame cake. J Sci Food Agric. 2010;90:218–26.

    CAS  PubMed  Google Scholar 

  8. 8.

    Sharma U-K, Sharma K, Sharma N, Singh H-P, Sinha A-K. Microwave-assisted efficient extraction of different parts of Hippophaë rhamnoides for the comparative evaluation of antioxidant activity and qualification of its phenolic constituents by reverse-phase high performance liquid chromatography. J Agric Food Chem. 2008;56:374–9.

    CAS  PubMed  Google Scholar 

  9. 9.

    Xiong HP, Yang WL, Zhang YS, Xiao WJ. Recent advances in natural plant antioxidants. Nat Prod Res Dev. 2001;13(5):75–9.

    CAS  Google Scholar 

  10. 10.

    Yanishlieva NV, Marinova EM. Stabilisation of edible oils with natural antioxidants. Eur J Lipid Sci Technol. 2001;103:752–67.

    CAS  Google Scholar 

  11. 11.

    Pedro AC, Baron Maurer JB, Zawadzki-Baggio SF, Avila S, Maciel GM, Haminiuk CWI. Bioactive compounds of organic goji berry (Lycium barbarum L.) prevents oxidative deterioration of soybean oil. Ind Crop Prod. 2018;112:90–7.

    CAS  Google Scholar 

  12. 12.

    Moure A, Cruz J, Franco D, Dominguez J, Sineiro J, Dominguez H, Núñez MJ, Parajó JC. Natural antioxidants from residual sources. Food Chem. 2001;72:145–71.

    CAS  Google Scholar 

  13. 13.

    Peschel W, Sanchez-Rabaneda F, Dn W, Plescher A, Gartzia I, Jimenez D, Lamuela-Raventos R, Buxaderas S, Condina C. An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem. 2006;97:137–50.

    CAS  Google Scholar 

  14. 14.

    Nour V, Corbu AR, Rotaru P, Karageorgou I, Lalas S. Effect of carotenoids, extracted from dry tomato waste, on the stability and characteristics of various vegetable oils. Grasas Aceites. 2018;69(1):e238.

    Google Scholar 

  15. 15.

    Araujo KLGV, Magnani M, Nascimento JA, Souza AL, Epaminondas PS, Queiroz N, Aquino JS, Souza AG, Costa MFC, Souza AL. By-products from fruit processing. One alternative antioxidant for use in soybean oil. J Therm Anal Calorim. 2017;130:1229–35.

    CAS  Google Scholar 

  16. 16.

    Li Y, Fabiano-Tixier AS, Tomao V, Cravotto G, Chemat F. Green ultrasound-assisted extraction of carotenoids based on the bio-refinery concept using sunflower oil as an alternative solvent. Ultrason Sonochem. 2013;20:12–8.

    PubMed  Google Scholar 

  17. 17.

    Abd-ElGhany ME, Ammar MS, Hegazy AE. Use of olive waste cake extract as a natural antioxidant for improving the stability of heated sunflower oil. World Appl Sci J. 2010;11(1):106–13.

    CAS  Google Scholar 

  18. 18.

    Saini RK, Nile SH, Park W. Carotenoids from fruits and vegetables: chemistry, analysis, occurrence, bioavailability and biological activities. Food Res Int. 2015;76:735–50.

    CAS  PubMed  Google Scholar 

  19. 19.

    Fiedor J, Burda K. Potential role of carotenoids as antioxidants in human health and disease. Nutrients. 2014;6:466–88.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Sabio E, Lozano M, de Espinosa VM, Mendes RL, Pereira AP, Palavra AF, Coelho JA. Lycopene and β-carotene extraction from tomato processing waste using supercritical CO2. Ind Eng Chem Res. 2003;42(25):6641–6.

    CAS  Google Scholar 

  21. 21.

    Guliyev VB, Gulb M, Yildirima A. Hippophae rhamnoides L.: chromatographic methods to determine chemical composition, use in traditional medicine and pharmacological effects. J Chromatogr B. 2004;812:291–307.

    CAS  Google Scholar 

  22. 22.

    Gao X, Ohlander M, Jeppsson N, Bjork L, Trajkovski V. Changes of antioxidant effects and their relationship to phytonutrients in fruits of sea buckthorn (Hippophae rhamnoides L.) during maturation. J Agric Food Chem. 2000;48(5):1485–90.

    CAS  PubMed  Google Scholar 

  23. 23.

    Bal LM, Meda V, Naik SN, Satya S. Sea buckthorn berries: a potential source of valuable nutrients for nutraceuticals and cosmoceuticals. Food Res Int. 2011;44:1718–27.

    CAS  Google Scholar 

  24. 24.

    Chen C, Xu XM, Chen Y, You MY, Wen FY, Zhan Y. Identification, quantification, and antioxidant activity of acylated flavonol glycosides from sea buckthorn (Hippophae rhamnoides ssp. sinensis). Food Chem. 2013;141:1573–9.

    CAS  PubMed  Google Scholar 

  25. 25.

    Périno-Issartier S, Zill H, Abert-Vian M, Chemat F. Solvent free microwave-assisted extraction of antioxidants from sea buckthorn (Hippophae rhamnoides) food by-products. Food Bioprocess Technol. 2011;4:1020–8.

    Google Scholar 

  26. 26.

    Szydłowska-Czerniak A, Trokowski K, Karlovits G, Szłyk E. Effect of refining processes on antioxidant capacity: total contents of phenolics and carotenoids in palm oils. Food Chem. 2011;129:1187–92.

    PubMed  Google Scholar 

  27. 27.

    Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio Med. 1999;26(9–10):1231–7.

    CAS  Google Scholar 

  28. 28.

    Lalas S, Tsaknis J. Extraction and identification of natural antioxidant from the seeds of Moringa oleifera tree variety of Malawi. J Am Oil Chem Soc. 2002;79:677–83.

    CAS  Google Scholar 

  29. 29.

    American Oil Chemists’ Society (AOCS). Official methods and recommended practices of the American Oil Chemists’ Society. 5th ed. Champaign: AOCS Press; 2009.

    Google Scholar 

  30. 30.

    Corbu AR, Nour V. Development and evaluation of a reverse-phase HPLC method for the analysis of carotenoids in egg yolk. Ann Univ Craiova Biol Hortic Food Technol Environ Eng Ser. 2017;22:81–8.

    Google Scholar 

  31. 31.

    Cavallaro G, Lazzara G, Konnova S, Fakhrullin R, Lvov Y. Composite films of natural clay nanotubes with cellulose and chitosan. Green Mater. 2014;2:232–42.

    Google Scholar 

  32. 32.

    Duarte AM, Aquino JS, Queiroz N, Dantas DLL, Maciel GS, Souza AL. A comparative study of the thermal and oxidative stability of moringa oil with olive and canola oils. J Therm Anal Calorim. 2018;134:1943–52.

    CAS  Google Scholar 

  33. 33.

    Cavallaro G, Lazzara G, Milioto S, Parisi F, Sanzillo V. Modified halloysite nanotubes: nanoarchitectures for enhancing the capture of oils from vapor and liquid phases. ACS Appl Mater Interface. 2014;6:606–12.

    CAS  Google Scholar 

  34. 34.

    Kruczek M, Świderski A, Mech-Nowak A, Król K. Antioxidant capacity of crude extracts containing carotenoids from the berries of various cultivars of sea buckthorn (Hippophae rhamnoides L.). Acta Biochim Pol. 2012;59(1):135–7.

    CAS  PubMed  Google Scholar 

  35. 35.

    Andersson SC, Olsson ME, Johansson E, Rumpunen K. Carotenoids in sea buckthorn (Hippophae rhamnoides L.) berries during ripening and use of pheophytin a as a maturity marker. J Agric Food Chem. 2009;57:250–8.

    CAS  PubMed  Google Scholar 

  36. 36.

    Raffo A, Paoletti F, Antonelli M. Changes in sugar, organic acid, flavonol and carotenoid composition during ripening of berries of three sea buckthorn (Hippophae rhamnoides L.) cultivars. Eur Food Res Technol. 2004;219:360–8.

    CAS  Google Scholar 

  37. 37.

    Korekar G, Dolkar P, Singh H, Srivastava RB, Stobdan T. Variability and the genotypic effect on antioxidant activity, total phenolics, carotenoids and ascorbic acid content in seventeen natural population of seabuckthorn (Hippophae rhamnoides L.) from trans-Himalaya. LWT-Food Sci Technol. 2014;55:157–62.

    CAS  Google Scholar 

  38. 38.

    Teleszko M, Wojdyło A, Rudzińska M, Oszmiański J, Golis T. Analysis of lipophilic and hydrophilic bioactive compounds content in sea buckthorn (Hippophae rhamnoides L.) berries. J Agric Food Chem. 2015;63:4120–9.

    CAS  PubMed  Google Scholar 

  39. 39.

    Chemat F, Périno-Issartier S, Loucif L, Elmaataoui M, Mason TJ. Enrichment of edible oil with sea buckthorn by-products using ultrasound-assisted extraction. Eur J Lipid Sci Technol. 2012;114:453–60.

    CAS  Google Scholar 

  40. 40.

    Kowalski B, Ratusz K, Kowalska D, Bekas W. Determination of the oxidative stability of vegetable oils by Differential Scanning Calorimetry and Rancimat measurements. Eur J Lipid Sci Technol. 2004;106:165–9.

    CAS  Google Scholar 

  41. 41.

    Gouveia L, Nobre B, Mrejen M, Cardoso A, Mendes R. Food functional oil coloured by pigments extracted from microalgae with supercritical CO2. Food Chem. 2007;101:717–23.

    CAS  Google Scholar 

  42. 42.

    Shixian Q, Dai Y, Kakuda Y, Shi J, Mittal G, Yeung D, Jiang Y. Synergistic anti-oxidative effects of lycopene with other bioactive compounds. Food Rev Int. 2005;21:295–311.

    CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Violeta Nour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 232 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Corbu, A.R., Rotaru, A. & Nour, V. Edible vegetable oils enriched with carotenoids extracted from by-products of sea buckthorn (Hippophae rhamnoides ssp. sinensis): the investigation of some characteristic properties, oxidative stability and the effect on thermal behaviour. J Therm Anal Calorim 142, 735–747 (2020). https://doi.org/10.1007/s10973-019-08875-5

Download citation


  • Antioxidant activity
  • Carotenoids
  • Extraction
  • Oxidative stability
  • Thermal stability