Chemical structure of soil organic matter

Stabilization by adsorbed water and connection to content of organic carbon, nitrogen, and clay minerals


Selective preservation belongs among the important stabilization mechanisms of soil organic matter (SOM). Conceptually, it is based on non-covalent intermolecular interactions of organic molecules, which leads to a decrease in the Gibbs’ energy of the SOM structure. Earlier works suggested that this stabilization of SOM physical structure is supported also by water molecules that form clusters bridging SOM moieties. This article reports results suggesting that water is connected also to stabilization of SOM chemical structure. We analyzed the dynamics and composition of gases evolved during drying of 33 mineral soils, which were exposed to 40% relative humidity prior to the analysis. It was observed that moisture elimination occurring below 100 °C is accompanied by evolution of a small amount of low molecular mass gases representing typical degradation products of organic materials. In particular, analyses revealed the evolution of CO, HCN, NO, and probably traces of NH3 and CO2, which implied degradation of N-containing molecules. The peak temperature of evolved CO correlated with the amount of adsorbed water. The amount of evolved CO positively correlated with the amount total organic C and N contents and clay content. On the contrary, the amount of CO evolved during degradation did not correlate with the amount of CO2 produced during incubation of analyzed soils either at short or longer incubation times. Evolution of gases started and culminated simultaneously with drying. The analysis of soils exposed to higher relative humidity levels resulted in a shift of the CO peaks to higher temperatures. Therefore, the results suggested a possible causality between water desorption at elevated temperature and SOM degradation processes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Lal R, Lorenz K, Hüttl RF, Schneider BU, von Braun J. Terrestrial biosphere as a source and sink of atmospheric carbon dioxide. In: Lal R, Lorenz K, Hüttl RF, Schneider BU, von Braun J, editors. Recarbonization Biosph. Dordrecht: Springer; 2012.

    Google Scholar 

  2. 2.

    Schmidt MWI, Torn MS, Abiven S, Dittma T, Guggenberger G, Janssens IA, et al. Persistence of soil organic matter as an ecosystem property. Nature. 2011;478:49–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Wiesmeier M, Urbanski L, Hobley E, Lang B, von Lützow M, Marin-Spiotta E, et al. Soil organic carbon storage as a key function of soils—a review of drivers and indicators at various scales. Geoderma. 2019;333:149–62.

    CAS  Article  Google Scholar 

  4. 4.

    Wagai R, Mayer LM. Sorptive stabilization of organic matter in soils by hydrous iron oxides. Geochim Cosmochim Acta. 2007;71:25–35.

    Article  CAS  Google Scholar 

  5. 5.

    Yeasmin S, Singh B, Johnston CT, Sparks DL. Organic carbon characteristics in density fractions of soils with contrasting mineralogies. Geochim Cosmochim Acta. 2017;218:215–36.

    CAS  Article  Google Scholar 

  6. 6.

    Sollins P, Homann P, Caldwell BA, Swanston EC, Kramer EM. Stabilization and destabilization of soil organic matter. Geoderma. 1996;74:65–105.

    Article  Google Scholar 

  7. 7.

    Lützow MV, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci. 2006;57:426–45.

    CAS  Article  Google Scholar 

  8. 8.

    Conte P. Biochar, soil fertility, and environment. Biol Fertil Soils. 2014;50:1175.

    Article  Google Scholar 

  9. 9.

    Kuzyakov Y, Merino A, Pereira P. Ash and fire, char, and biochar in the environment. L Degrad Dev. 2018;29:2040–4.

    Article  Google Scholar 

  10. 10.

    Piccolo A. The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Adv Agron. 2002;75:57–134.

    Article  CAS  Google Scholar 

  11. 11.

    Hu W-G, Mao J, Xing B, Schmidt-Rohr K. Poly(methylene) crystallites in humic substances detected by nuclear magnetic resonance. Environ Sci Technol. 2000;34:530–4.

    Article  CAS  Google Scholar 

  12. 12.

    Chilom G, Rice JA. Glass transition and crystallite melting in natural organic matter. Org Geochem. 2005;36:1339–46.

    Article  CAS  Google Scholar 

  13. 13.

    Chen XF, Ju WM, Chen JM, Ren LL. Interactions between terrestrial ecosystem water and carbon cycles and their simulation methods: a review. Chin J Ecol. 2009;28:1630–9.

    Google Scholar 

  14. 14.

    Bolan NS, Adriano DC, Kunhikrishnan A, James T, McDowell R, Senesi N. Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils. Adv Agron. 2011;110:1–75.

    Article  CAS  Google Scholar 

  15. 15.

    Chen B, Coops NC. Understanding of coupled terrestrial carbon nitrogen and water dynamics-an overview. Sensors. 2009;9:8624–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Likens GE, Bormann FH, Johnson NM. Interactions between major biogeochemical cycles in terrestrial ecosystems. In: Likens GE, editor. Some perspect major biogeochem cycles. Chichester: Wiley; 1981. p. 93–112.

    Google Scholar 

  17. 17.

    Potts M. Desiccation tolerance of prokaryotes. Microbiol Rev. 1994;58:755–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Tisdall JM, Oades JM. Organic matter and water-stable aggregates in soils. J Soil Sci. 1982;33:141–63.

    Article  CAS  Google Scholar 

  19. 19.

    Borisover M. The effect of organic sorbates on water associated with environmentally important sorbents: estimating and the LFER analysis. Adsorption. 2013;19(2–4):241–50.

    Article  CAS  Google Scholar 

  20. 20.

    Borisover M, Graber ER. Simplified link solvation model (LSM) for sorption in natural organic matter. Langmuir. 2002;18:4775–82.

    Article  CAS  Google Scholar 

  21. 21.

    Borisover M, Graber ER. Hydration of natural organic matter: effect on sorption of organic compounds by natural organic matter fractions vs natural organic matter source material. Environ Sci Technol. 2004;38:4120–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Agam N, Berliner PR. Dew formation and water vapor adsorption in semi-arid environments—a review. J Arid Environ. 2006;65:572–90.

    Article  Google Scholar 

  23. 23.

    McHugh TA, Morrissey EM, Reed SC, Hungate BA, Schwartz E. Water from air: an overlooked source of moisture in arid and semiarid regions. Sci Rep. 2015;5:13767.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Stovicek A, Kim M, Or D, Gillor O, Štovíček A, Kim M, et al. Microbial community response to hydration-desiccation cycles in desert soil. Sci Rep. 2017;7:1–9.

    Article  CAS  Google Scholar 

  25. 25.

    Williams CA, Albertson JD. Contrasting short- and long-timescale effects of vegetation dynamics on water and carbon fluxes in water-limited ecosystems. Water Resour Res. 2005.

    Article  Google Scholar 

  26. 26.

    Vásquez-Méndez R, Ventura-Ramos E, Oleschko K, Hernández-Sandoval L, Domínguez-Cortázar MA. Soil erosion processes in semiarid areas: the importance of native vegetation. Danilo G Soil Eros Stud Shanghai InTech. 2011;1:25–41.

    Google Scholar 

  27. 27.

    Lopez-Capel E, Abbott GD, Thomas KM, Manning DAC. Coupling of thermal analysis with quadrupole mass spectrometry and isotope ratio mass spectrometry for simultaneous determination of evolved gases and their carbon isotopic composition. J Anal Appl Pyrol. 2006;75:82–9.

    Article  CAS  Google Scholar 

  28. 28.

    Lopez-Capel E, Bol R, Manning DAC. Application of simultaneous thermal analysis mass spectrometry and stable carbon isotope analysis in a carbon sequestration study. Rapid Commun Mass Spectrom. 2005;19:3192–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Manning DAC, Lopez-Capel E, Barker S. Seeing soil carbon: use of thermal analysis in the characterization of soil C reservoirs of differing stability. Miner Magnes. 2005;69:425–36.

    CAS  Article  Google Scholar 

  30. 30.

    Manning DAC, Lopez-Capel E, White ML, Barker S. Carbon isotope determination for separate components of heterogeneous materials using coupled thermogravimetric analysis/isotope ratio mass spectrometry. Rapid Commun Mass Spectrom. 2008;22:1187–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Demyan MS, Rasche F, Schütt M, Smirnova N, Schulz E, Cadisch G. Combining a coupled FTIR-EGA system and in situ DRIFTS for studying soil organic matter in arable soils. Biogeosciences. 2013;10:2897–913.

    Article  Google Scholar 

  32. 32.

    Wang Y, Lu S, Ren T, Li B. Bound water content of air-dry soils measured by thermal analysis. Soil Sci Soc Am J. 2011;75:481–7.

    Article  CAS  Google Scholar 

  33. 33.

    Degrendele CC, Audy OO, Hofman J, Kučerik J, Kukučka P, Mulder MD, et al. Diurnal variations of air-soil exchange of semivolatile organic compounds (PAHs, PCBs, OCPs, and PBDEs) in a central European receptor area. Environ Sci Technol. 2016;50:4278–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Insam H, Seewald MSA. Volatile organic compounds (VOCs) in soils. Biol Fertil Soils. 2010;46:199–213.

    Article  CAS  Google Scholar 

  35. 35.

    Karathanasis AD, Hajek BF. Quantitative evaluation of water adsorption on soil clays. Soil Sci Soc Am J. 1982;46:1321–5.

    Article  Google Scholar 

  36. 36.

    Diehl D, Schwarz J, Goebel MO, Woche SK, Schneckenburger T, Krüger J, et al. Effect of multivalent cations, temperature, and aging on SOM thermal properties. J Therm Anal Calorim. 2014;118:1203–13.

    Article  CAS  Google Scholar 

  37. 37.

    Aquino AJA, Tunega D, Schaumann GE, Haberhauer G, Gerzabek MH, Lischka H. Stabilizing capacity of water bridges in nanopore segments of humic substances: a theoretical investigation. J Phys Chem C. 2009;113:16468–75.

    CAS  Article  Google Scholar 

  38. 38.

    Hurrass J, Schaumann GE. Influence of the sample history and the moisture status on the thermal behavior of soil organic matter. Geochim Cosmochim Acta. 2007;71:691–702.

    Article  CAS  Google Scholar 

  39. 39.

    Schaumann GE, Bertmer M. Do water molecules bridge soil organic matter molecule segments? Eur J Soil Sci. 2008;59:423–9.

    CAS  Article  Google Scholar 

  40. 40.

    Kunhi Mouvenchery Y, Jaeger A, Aquino AJA, Tunega D, Diehl D, Bertmer M, et al. Restructuring of a peat in interaction with multivalent cations: effect of cation type and aging time. PLoS ONE. 2013;8:e65359.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Mouvenchery YK, Kučerík J, Diehl D, Schaumann GE, Kunhi Mouvenchery Y, Kučerík J, et al. Cation-mediated cross-linking in natural organic matter: a review. Rev Environ Sci Biotechnol. 2012;11:41–54.

    Article  Google Scholar 

  42. 42.

    Jaeger A, Schwarz J, Kunhi Mouvenchery Y, Schaumann GE, Bertmer M, Jäger A, et al. Physical long term regeneration dynamics of soil organic matter as followed by 1H solid-state NMR methods. Environ Chem. 2015.

    Article  Google Scholar 

  43. 43.

    Siewert C, Kučerík J. Practical applications of thermogravimetry in soil science: Part 3: I interrelations between soil components and unifying principles of pedogenesis. J Therm Anal Calorim. 2015;120:471–80.

    CAS  Article  Google Scholar 

  44. 44.

    Moldoveanu SC. Pyrolysis of amino acids and small peptides. In: Moldoveanu SC, editor. Pyrolysis org mol with appl to heal environ issues. Amsterdam: Elsevier Science; 2010. p. 527–78.

    Google Scholar 

  45. 45.

    Moldoveanu SCC. Pyrolysis of amines and imines. Tech Instrum Anal Chem. 2010;4:349–64.

    Article  Google Scholar 

  46. 46.

    Spinoni J, Naumann G, Carrao H, Barbosa P, Vogt J. World drought frequency, duration, and severity for 1951–2010. Int J Clim. 2014;34:2792–804.

    Article  Google Scholar 

  47. 47.

    Kucerik J, Ctvrtnickova A, Siewert C. Practical application of thermogravimetry in soil science: part 1. Thermal and biological stability of soils from contrasting regions. J Therm Anal Calorim. 2013;113:1103–11.

    CAS  Article  Google Scholar 

  48. 48.

    Plante AF, Pernes M, Chenu C. Changes in clay-associated organic matter quality in a C depletion sequence as measured by differential thermal analyses. Geoderma. 2005;129:186–99.

    Article  CAS  Google Scholar 

  49. 49.

    David J, Steinmetz Z, Kucerik J, Schaumann GE. Quantitative analysis of poly(ethylene terephthalate) microplastics in soil via thermogravimetry-mass spectrometry. Anal Chem. 2018;90(15):8793–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Hotová G, Slovák V. Quantitative TG-MS analysis of evolved gases during the thermal decomposition of carbon containing solids. Thermochim Acta. 2016;632:23–8.

    Article  CAS  Google Scholar 

  51. 51.

    Hotová G, Slovák V. Determination of the surface oxidation degree of the carbonaceous materials by quantitative TG-MS analysis. Anal Chem. 2017;89:1710–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Miller WP, Miller DM. A micro-pipette method for soil mechanical analysis. Commun Soil Sci Plant Anal. 1987;18:1–15.

    CAS  Article  Google Scholar 

  53. 53.

    Smirnova N, Demyan MS, Rasche F, Cadisch G, Müller T. Calibration of CO2 trapping in alkaline solutions during soil incubation at varying temperatures using a respicond VI. Open J Soil Sci. 2014;4:161–7.

    Article  CAS  Google Scholar 

  54. 54.

    Materazzi S, Vecchio S. Evolved gas analysis by mass spectrometry. Appl Spectrosc Rev. 2011;46:261–340.

    Article  Google Scholar 

  55. 55.

    Kučerík J, Siewert C. Practical application of thermogravimetry in soil science part 2 Modelling and predicton of soil respiration using thermal mass losses. J Therm Anal Calorim. 2014;116:563–70.

    Article  CAS  Google Scholar 

  56. 56.

    Siewert C, Demyan MS, Kučerík J. Interrelations between soil respiration and its thermal stability. J Therm Anal Calorim. 2012;110:413–9.

    CAS  Article  Google Scholar 

  57. 57.

    Mikutta R, Kleber M, Kaiser K, Jahn R. Review: organic matter removal from soils using hydrogen peroxide. Soil Sci Soc Am J. 2005;69:120–35.

    Article  CAS  Google Scholar 

  58. 58.

    Theng BKG, Churchman GJ, Newman RH. The occurrence of interlayer clay-organic complexes in two New-Zealand soils. Soil Sci. 1986;142:262–6.

    Article  CAS  Google Scholar 

  59. 59.

    Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, et al. Organo-mineral associations in temperate soils: integrating biology, mineralogy, and organic matter chemistry. J Plant Nutr Soil Sci. 2008;171:61–82.

    Article  CAS  Google Scholar 

  60. 60.

    Schmidt MWI, Noack AG. Black carbon in soils andsediments: analysis, distribution, implications, and current challenges. Glob Biogeochem Cycl. 2000;14:777–93.

    Article  CAS  Google Scholar 

  61. 61.

    Dorodnikov M, Fangmeier A, Giesemann A, Weigel HJ, Stahr K, Kuzyakov Y, et al. Thermal stability of soil organic matter pools and their turnover times calculated by δ13C under elevated CO2and two levels of N fertilisation. Isot Environ Health Stud. 2008;44:365–76.

    Article  CAS  Google Scholar 

  62. 62.

    Schulten H-R, Leinweber P. Characterization of humic and soil particles by analytical pyrolysis and computer modeling. J Anal Appl Pyrol. 1996;38:1–53.

    Article  CAS  Google Scholar 

  63. 63.

    Plante AF, Fernández JM, Leifeld J. Application of thermal analysis techniques in soil science. Geoderma. 2009;153:1–10.

    CAS  Article  Google Scholar 

  64. 64.

    Olszak-Humienik M. On the thermal stability of some ammonium salts. Thermochim Acta. 2001;378:107–12.

    Article  CAS  Google Scholar 

  65. 65.

    Warren CR. Quaternary ammonium compounds can be abundant in some soils and are taken up as intact molecules by plants. New Phytol. 2013;198:476–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Kleber M, Sollins P, Sutton R. A conceptual model of organo-mineral interactions in soils: self-assembly of organic molecular fragments into zonal structures on mineral surfaces. Biogeochemistry. 2007;85:9–24.

    Article  Google Scholar 

  67. 67.

    Rillig MC, Caldwell BA, Wösten HAB, Sollins P. Role of proteins in soil carbon and nitrogen storage: controls on persistence. Biogeochemistry. 2007;85:25–44.

    Article  CAS  Google Scholar 

  68. 68.

    Knicker H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry. 2007;85:91–118.

    Article  CAS  Google Scholar 

  69. 69.

    Moldoveanu SC. Nucleic acids. In: Analytical pyrolysis of natural organic polymers, chap. 13. Techniques and Instrumentation in Analytical Chemistry Series, vol. 20; 1998. p. 399–408.

  70. 70.

    Schulten HR. Three dimensional molecular structures of humic acids and their interactions with water and dissolved contaminants. Int J Environ Anal Chem. 1996;64:147–62.

    Article  CAS  Google Scholar 

  71. 71.

    Leinweber P, Schulten HR. Advances in analytical pyrolysis of soil organic matter. J Anal Appl Pyrol. 1999;49:359–83.

    Article  CAS  Google Scholar 

  72. 72.

    Moldoveanu SCC. Pyrolysis of carboxylic acids. In: Moldoveanu SC, editor. Pyrolysis of organic molecules: applications to health and environmental issues. Amsterdam: Elsevier; 2010. p. 471–526.

    Google Scholar 

  73. 73.

    Treseder KK, Turner KM. Glomalin in ecosystems. Soil Sci Soc Am J. 2007;71:1257–66.

    Article  CAS  Google Scholar 

  74. 74.

    Wright SF, Upadhyaya A. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 1996;161:575–86.

    Article  CAS  Google Scholar 

  75. 75.

    Knicker H. Soil organic N—an under-rated player for C sequestration in soils? Soil Biol Biochem. 2011;43:1118–29.

    Article  CAS  Google Scholar 

  76. 76.

    Costard R, Greve C, Heisler IA, Elsaesser T. Ultrafast energy redistribution in local hydration shells of phospholipids: a two-dimensional infrared study. J Phys Chem Lett. 2012;3:3646–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77.

    Rasmussen C, Southard RJ, Horwath WR. Modeling energy inputs to predict pedogenic environments using regional environmental databases. Soil Sci Soc Am J. 2005;69:1266–74.

    Article  CAS  Google Scholar 

Download references


The financial support acquired within the FCH-S-19-5971 projects of the Ministry of Education, Youth and Sports of the Czech Republic is acknowledged. Furthermore, the author thanks Professor Christian Siewert, University of Applied Sciences Dresden, Germany, for fruitful discussion and former colleagues from University of Koblenz-Landau, Germany, in particular Professor Gabriele E. Schaumann, for valuable advice and Mr. Andreas Hirsch for conducting some laboratory experiments.

Author information



Corresponding author

Correspondence to Jiří Kučerík.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 91 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kučerík, J. Chemical structure of soil organic matter. J Therm Anal Calorim 140, 233–242 (2020).

Download citation


  • Stability
  • Soil organic matter
  • Water
  • Selective preservation
  • N-containing molecules
  • Evolved gas analysis