Preformulation studies for atorvastatin calcium

An instrumental approach

Abstract

This paper deals with the study of compatibility between antihyperlipidemic agent atorvastatin calcium trihydrate (ATV) and eight pharmaceutical excipients used in the development of solid dosage forms, namely citric acid, anhydrous lactose, magnesium citrate, magnesium carbonate, sodium carboxymethyl cellulose, polyvinylpyrrolidone K30, colloidal silica and sorbitol. As investigational tools, universal attenuated total reflectance Fourier transform infrared spectroscopy and powder X-ray diffractogram patterns were used for binary mixtures of ATV with each excipient at ambient condition and then completed by subjecting the samples to thermal stress using thermal analysis (TG/DTG/HF), in non-isothermal conditions and in oxidative medium. It was shown the binary mixtures do not present interactions between ATV and excipients when stored under ambient conditions for 2 months, while under thermal stress, ATV presents interactions with sorbitol.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Chadha R, Bhandari S. Drug-excipient compatibility screening–role of thermoanalytical and spectroscopic techniques. J Pharmaceut Biomed Anal. 2014;87:82–97.

    Article  CAS  Google Scholar 

  2. 2.

    Liltorp K, Larsen TG, Willumsen B, Holm R. Solid state compatibility studies with tablet excipients using non thermal methods. J Pharm Biomed Anal. 2011;55(3):424–8.

    Article  CAS  Google Scholar 

  3. 3.

    Bhattacharyya L, Schuber S, Sheeha C, William R. Excipients: Background/Introduction. In: Katdare A, Chaubal M, editors. Excipient development for pharmaceutical, biotechnology, and drug delivery systems. New York: Informa Healthcare USA, Inc.; 2006. p. 1–2.

    Google Scholar 

  4. 4.

    Bharate SS, Bharate SB, Bajaj AN. Interactions and incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: a comprehensive review. J Excip Food Chem. 2010;1(3):3–26.

    CAS  Google Scholar 

  5. 5.

    Julio AT, Zamara IF, Garcia JS, Trevisan MG. Compatibility of sildenafil citrate and pharmaceutical excipients by thermal analysis and LC–UV. J Therm Anal Calorim. 2013;111:2037–44.

    Article  CAS  Google Scholar 

  6. 6.

    Bruni G, Berbenni V, Milanese C, Girella A, Marini A. Drug-excipient compatibility studies in binary and ternary mixtures by physico-chemical techniques. J Therm Anal Calorim. 2010;102:193–201.

    Article  CAS  Google Scholar 

  7. 7.

    de Barros Lima IP, Lima NGPB, Barros DMC, et al. Compatibility study between hydroquinone and the excipients used in semi-solid pharmaceutical forms by thermal and non-thermal techniques. J Therm Anal Calorim. 2015;120:719–32.

    Article  CAS  Google Scholar 

  8. 8.

    Stanisz B, Regulska K, Kania J, Garbacki P. Effect of pharmaceutical excipients on the stability of angiotensin-converting enzyme inhibitors in their solid dosage formulations. Drug Dev Ind Pharm. 2013;39(1):51–61.

    Article  CAS  Google Scholar 

  9. 9.

    Djordjevic FN, Antonijevic MD, Pavlovic A, Vuckovic I, Nikolic K, Agbaba D. The stress stability of olanzapine: studies of interactions with excipients in solid state pharmaceutical formulations. Drug Dev Ind Pharm. 2015;41(3):502–14.

    Article  CAS  Google Scholar 

  10. 10.

    Daniel JSP, Veronez IP, Rodrigues LL, Trevisan MG, Garcia JS. Risperidone–Solid-state characterization and pharmaceutical compatibility using thermal and non-thermal techniques. Thermochim Acta. 2013;568:148–55.

    Article  CAS  Google Scholar 

  11. 11.

    Ledeti A, Vlase G, Vlase T, et al. Solid-state preformulation studies of amiodarone hydrochloride. J Therm Anal Calorim. 2016;126(1):181–7.

    Article  CAS  Google Scholar 

  12. 12.

    Buda V, Andor M, Ledeti A, Ledeti I, et al. Comparative solid-state stability of perindopril active substance vs. pharmaceutical formulation. Int J Mol Sci. 2017;18:164. https://doi.org/10.3390/ijms18010164.

    Article  PubMed Central  CAS  Google Scholar 

  13. 13.

    Fulias, et al. Thermal behaviour of procaine and benzocaine Part II: compatibility study with some pharmaceutical excipients used in solid dosage forms. Chem Cent J. 2013;7:140.

    Article  Google Scholar 

  14. 14.

    Monkhouse DC, Maderich A. Whither compatibility testing? Drug Dev Ind Pharm. 1989;15:2115–30.

    Article  CAS  Google Scholar 

  15. 15.

    http://www.drugbank.ca/drugs/DB01076. Accessed 26 Feb 2017.

  16. 16.

    https://www.fda.gov/Drugs/ResourcesForYou/Consumers/BuyingUsingMedicineSafely/UnderstandingGenericDrugs/ucm167991.htm. Accessed 25 Feb 2017.

  17. 17.

    http://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020702s057lbl. Accessed 22 Feb 2017.

  18. 18.

    Kerc J, Salobir M, Bavec B. 2006; Patent US 7030151 B2.

  19. 19.

    https://pubchem.ncbi.nlm.nih.gov/compound/atorvastatin. Accessed 23 Feb 2017.

  20. 20.

    Ledeti I, Vlase G, Vlase T, Suta LM, Todea A, Fulias A. Selection of solid-state excipients for simvastatin dosage forms through thermal and nonthermal techniques. J Therm Anal Calorim. 2015;121(3):1093–102.

    Article  CAS  Google Scholar 

  21. 21.

    Ledeti I, Vlase G, Vlase T, Ciucanu I, Olariu T, Todea A, Fulias A, Suta LM. Instrumental analysis of potential lovastatin—excipient interactions in preformulation studies. Rev Chim. 2015;66(6):879–82.

    CAS  Google Scholar 

  22. 22.

    da Silva EP, Pereira MAV, de Barros Lima IP, et al. Compatibility study between atorvastatin and excipients using DSC and FTIR. J Therm Anal Calorim. 2016;123:933–9.

    Article  CAS  Google Scholar 

  23. 23.

    Dewan I, Shahriar M, Islam SMA. Study of differential scanning calorimetry of atorvastatin in solid solution. Bangladesh Pharm J. 2011;14(2):141–6.

    Google Scholar 

  24. 24.

    http://www.chemicalbook.com/ChemicalProductProperty_US_CB4260130.aspx.

  25. 25.

    https://www.lktlabs.com/product/atorvastatin-calcium-trihydrate/.

  26. 26.

    Lemsi M, Galai H, Louhaichi MR, Fessi H, Kalfat R. Amorphization of atorvastatin calcium by mechanical process: characterization and stabilization within polymeric matrix. J Pharm Innov. 2017;12:216–25. https://doi.org/10.1007/s12247-017-9282-0.

    Article  Google Scholar 

  27. 27.

    Dissertation—discovering new crystalline forms of atorvastatin calcium—new strategies for screening, Yong Suk Jin, https://d-nb.info/1029293406/34.

  28. 28.

    Ledeţi I, Ledeţi A, Vlase G, Vlase T, Matusz P, Bercean V, Suta L-M, Piciu D. Thermal stability of synthetic thyroid hormone l-thyroxine and l-thyroxine sodium salt hydrate both pure and in pharmaceutical formulations. J Pharm Biomed Anal. 2016;125:33–40.

    Article  CAS  Google Scholar 

  29. 29.

    Ilici M, Bercean V, Venter M, Ledeti I, Olariu T, Suta L-M, Fulias A. Investigations on the thermal-induced degradation of transitional coordination complexes containing (3 h-2-thioxo-1,3,4-thiadiazol-5-yl)thioacetate moiety. Rev Chim. 2014;65(10):1142–5.

    CAS  Google Scholar 

  30. 30.

    Ledeţi I, Murariu M, Vlase G, Vlase T, Doca N, Ledeţi A, Şuta L-M, Olariu T. Investigation of thermal-induced decomposition of iodoform. J Therm Anal Calorim. 2017;127(1):565–70.

    Article  CAS  Google Scholar 

  31. 31.

    Suta LM, Vlase G, Ledeti A, Vlase T, Matusz P, Trandafirescu C, Circioban D, Olariu S, Ivan C, Murariu MS, Stelea L, Ledeti I. Solid-state thermal behaviour of cholic acid. Rev Chim. 2016;67(2):329–31.

    CAS  Google Scholar 

  32. 32.

    Buda V, Andor M, Ledeti A, Ledeti I, Vlase G, Vlase T, Cristescu C, Voicu M, Suciu L, Tomescu M. Comparative solid-state stability of perindopril active substance vs. pharmaceutical formulation. Int J Mol Sci. 2017;18(1):164.

    Article  CAS  Google Scholar 

  33. 33.

    Ledeti A, Olariu T, Caunii A, Vlase G, Circioban D, Baul B, Ledeti I, Vlase T, Murariu M. Evaluation of thermal stability and kinetic of degradation for levodopa in non-isothermal conditions. J Therm Anal Calorim. 2017;1–8.

  34. 34.

    Ledeti I, Vlase G, Vlase T, Bercean V, Fulias A. Kinetic of solid-state degradation of transitional coordinative compounds containing functionalized 1,2,4-triazolic ligand. J Therm Anal Calorim. 2015;121(3):1049–57.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ionuţ Ledeţi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cristea, M., Baul, B., Ledeţi, I. et al. Preformulation studies for atorvastatin calcium. J Therm Anal Calorim 138, 2799–2806 (2019). https://doi.org/10.1007/s10973-019-08798-1

Download citation

Keywords

  • Atorvastatin
  • Compatibility study
  • Excipient
  • FTIR
  • PXRD
  • Statin
  • Thermal stability