Thermal properties and crystallization mechanism of undoped and Nd\(^{3+}\)-doped \(\hbox {SiO}_2\)\(\hbox {Al}_2\hbox {O}_3\)–CaO–MgO glasses

Abstract

The influence of composition and neodymium doping on the crystallization kinetic of calcium aluminosilicate glasses, melted under vacuum atmosphere, was investigated. Glass stability was evaluated by means of thermal events. Non-isothermal methods of Kissinger and Ozawa were used to obtain the apparent activation energy and to predict the crystallization mechanism. The isothermal method of Ray and Day was applied in order to obtain the nucleation rate type curve and the maximum nucleation temperature. In the studied glass system, surface crystallization was more favorable than bulk. By confocal Raman microscopy, it was estimated that the crystallized region was 20–30 \(\upmu\)m from surface to center of sample. This observation was further validated by structural investigation with X-ray diffraction, which showed the formation of \(\hbox {Ca}_9\hbox {Al}_6\hbox {O}_{18}\) and \(\hbox {Ca}_3\hbox {Al}_2\hbox {O}_6\) phase as a surface layer in the samples.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Zhu M, Fa Y, Jian Z, Yao L, Jin C, Nan R, Chang F. Non-isothermal crystallization kinetics and soft magnetic properties of the Fe67Nb5B28 metallic glasses. J Therm Anal Calorim. 2018;132(1):173. https://doi.org/10.1007/s10973-017-6867-2.

    CAS  Article  Google Scholar 

  2. 2.

    Das A, Goswami M, Krishnan M. Crystallization kinetics of Li\(_{2}\)O-Al\(_{2}\)O\(_3\)-GeO\(_2\)-P\(_{2}\)O\(_{5}\) glass-ceramics system. J Therm Anal Calorim. 2018;131(3):2421. https://doi.org/10.1007/s10973-017-6856-5.

    CAS  Article  Google Scholar 

  3. 3.

    Xia X, Dutta I, Mauro JC, Aitken BG, Kelton K. Temperature dependence of crystal nucleation in \(\text{ BaO}_2\text{SiO}_2 \text{and} \text{5BaO}_8\text{SiO}_2\) glasses using differential thermal analysis. J Non-Cryst Solids. 2017;459:45. https://doi.org/10.1016/j.jnoncrysol.2016.12.032.

    CAS  Article  Google Scholar 

  4. 4.

    Merkit ZY, Toplan HÖ, Toplan N. The crystallization kinetics of CaO-Al\(_2\)O\(_3\)-SiO\(_2\) (CAS) glass-ceramics system produced from pumice and marble dust. J Therm Anal Calorim. 2018;134(1):807. https://doi.org/10.1007/s10973-018-7571-6.

    CAS  Article  Google Scholar 

  5. 5.

    Ray CS, Day DE. Determining the nucleation rate curve for lithium disilicate glass by differential thermal analysis. J Am Ceram Soc. 1990;73(2):439. https://doi.org/10.1111/j.1151-2916.1990.tb06532.x.

    CAS  Article  Google Scholar 

  6. 6.

    Ray CS, Day DE. An analysis of nucleation-rate type of curves in glass as determined by differential thermal analysis. J Am Ceram Soc. 1997;80(12):3100. https://doi.org/10.1111/j.1151-2916.1997.tb03238.x.

    CAS  Article  Google Scholar 

  7. 7.

    Tošić MB, Grujić SR, Živanović VD, Nikolić JD, Matijašević SD. The nucleation of \(\text{K}_2\text{TiGe}_3\text{O}_9\) glass under non-isothermal conditions. J Non-Cryst Solids. 2010;356(28–30):1385. https://doi.org/10.1016/j.jnoncrysol.2010.05.047.

    CAS  Article  Google Scholar 

  8. 8.

    Fokin VM, Cabral AA, Reis RMCV, Nascimento MLF, Zanotto ED. Critical assessment of DTA-DSC methods for the study of nucleation kinetics in glasses. J Non-Cryst Solids. 2010;356(6–8):358. https://doi.org/10.1016/j.jnoncrysol.2009.11.038.

    CAS  Article  Google Scholar 

  9. 9.

    Massera J, Remond J, Musgraves J, Davis MJ, Misture S, Petit L, Richardson K. Nucleation and growth behavior of glasses in the \({\text{TeO}}_2{-}{\text{Bi}}_2{\text{O}}_3{-}\text{ZnO}\) glass system. J Non-Cryst Solids. 2010;356(52–54):2947. https://doi.org/10.1016/j.jnoncrysol.2010.03.045.

    CAS  Article  Google Scholar 

  10. 10.

    Kržmanc MM, Došler U, Suvorov D. The nucleation and crystallization of \({\text{MgO}}{-}{\text{B}}_2{\text{O}}_3{-}\text{SiO }_2\) glass. J Eur Ceram Soc. 2011;31(13):2211. https://doi.org/10.1016/j.jeurceramsoc.2011.05.048.

    CAS  Article  Google Scholar 

  11. 11.

    Rezvani M, Marghussian VK, Eftekhari Yekta B. Crystal nucleation and growth rates, time-temperature transformation diagram, and mechanical properties of a \({\text{SiO}}_2{-}{\text{Al}}_2{\text{O}}_3{-}{\text{CaO{-}MgO{-}(R}}_2{\text{O)}}\) glass in the presence of \({\text{Cr}}_2{\text{O}}_3{\text{,}} {\text{Fe}}_2{\text{O}}_3{\text{,}} {\text{and}} {\text{TiO}}_2\) nucleants. Int J Appl Ceram Technol. 2011;8(1):152. https://doi.org/10.1111/j.1744-7402.2009.02419.x.

    CAS  Article  Google Scholar 

  12. 12.

    Ranasinghe KS, Ray CS, Day DE, Humble G. Heterogeneous nucleation on platinum doped Li2O 2SiO2 glass by differential thermal analysis. J Non-Cryst Solids. 2017;473:141.

    CAS  Article  Google Scholar 

  13. 13.

    Sampaio JA, Catunda T, Gandra FCG, Gama S, Bento AC. Structure and properties of water free \(\text{ Nd }_2\text{ O }_3\) doped low silica calcium aluminate glasses. J Non-Cryst Solids. 1999;247:196.

    CAS  Article  Google Scholar 

  14. 14.

    Sampaio J, Baesso M, Gama S, Coelho aa, Eiras J, Santos I. Rare earth doping effect on the elastic moduli of low silica calcium aluminosilicate glasses. J Non-Cryst Solids. 2002;304(1–3):293. https://doi.org/10.1016/S0022-3093(02)01037-2.

    CAS  Article  Google Scholar 

  15. 15.

    De Sousa DF, Nunes LAO, Rohling JH, Baesso ML. Laser emission at 1077 nm in \(\text{ Nd }^{3+}\)-doped calcium aluminosilicate glass. Appl Phys B Lasers Opt. 2003;77:59. https://doi.org/10.1007/s00340-003-1247-y.

    CAS  Article  Google Scholar 

  16. 16.

    Steimacher A, Astrath N, Novatski A, Pedrochi F, Bento A, Baesso M, Medina A. Characterization of thermo-optical and mechanical properties of calcium aluminosilicate glasses. J Non-Cryst Solids. 2006;352(32–35):3613. https://doi.org/10.1016/j.jnoncrysol.2006.03.091.

    CAS  Article  Google Scholar 

  17. 17.

    Steimacher A, Barboza MJ, Pedrochi F, Astrath NG, Rohling JH, Baesso ML, Medina AN. \(\text{ Nd }^{3+}\)doped CAS glasses: a thermo-optical and spectroscopic investigation. Opt Mater. 2014;37(C):531. https://doi.org/10.1016/j.optmat.2014.07.018.

    CAS  Article  Google Scholar 

  18. 18.

    Flizikowski G, Zanuto V, Novatski A, Nunes L, Malacarne L, Baesso M, Astrath N. Upconversion luminescence and hypersensitive transitions of \(\text{ Pr }^{3+}\)-doped calcium aluminosilicate glasses. J Lumin. 2018;202:27. https://doi.org/10.1016/j.jlumin.2018.05.009.

    CAS  Article  Google Scholar 

  19. 19.

    Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bureau Stand. 1956;57(4):217. https://doi.org/10.6028/jres.057.026.

    CAS  Article  Google Scholar 

  20. 20.

    Ozawa T. Kinetics of non-isothermal crystallization. Polymer. 1971;12(3):150. https://doi.org/10.1016/0032-3861(71)90041-3.

    CAS  Article  Google Scholar 

  21. 21.

    Biswas K, Sontakke AD, Majumder M, Annapurna K. Nonisothermal crystallization kinetics and microstructure evolution of calcium lanthanum metaborate glass. J Therm Anal Calorim. 2010;101(1):143. https://doi.org/10.1007/s10973-009-0450-4.

    CAS  Article  Google Scholar 

  22. 22.

    Steimacher A, Barboza MJ, Farias AM, Sakai OA, Rohling JH, Bento AC, Baesso ML, Medina AN, Lepienski CM. Preparation of \(\text{ Nd }_{2}\text{ O }_{3}\)-doped calcium aluminosilicate glasses and thermo-optical and mechanical characterization. J Non-Cryst Solids. 2008;354(42–44):4749. https://doi.org/10.1016/j.jnoncrysol.2008.04.031.

    CAS  Article  Google Scholar 

  23. 23.

    Donald IW. Crystallization kinetics of a lithium zinc silicate glass studied by DTA and DSC. J Non-Cryst Solids. 2004;345–346:120. https://doi.org/10.1016/j.jnoncrysol.2004.08.007.

    CAS  Article  Google Scholar 

  24. 24.

    Matusita K, Komatsu T, Yokota R. Kinetics of non-isothermal crystallization process and activation energy for crystal growth in amorphous materials. J Mater Sci. 1984;19(1):291. https://doi.org/10.1007/BF00553020.

    CAS  Article  Google Scholar 

  25. 25.

    Leonelli C, Manfredini T, Paganelli M, Pozzi P, Pellacani GC. Crystallization of some anorthite-diopside glass precursors. J Mater Sci. 1991;26(18):5041. https://doi.org/10.1007/BF00549889.

    CAS  Article  Google Scholar 

  26. 26.

    Kang M, Kang S. Influence of \(\text{ Al }_2\text{ O }_3\) additions on the crystallization mechanism and properties of diopside/anorthite hybrid glass-ceramics for LED packaging materials. J Cryst Growth. 2011;326(1):124. https://doi.org/10.1016/j.jcrysgro.2011.01.081.

    CAS  Article  Google Scholar 

  27. 27.

    Keyvani N, Marghussian VK, Rezaie HR, Kord M. Effect of \(\text{ Al }_2\text{ O }_3\) content on crystallization behavior, microstructure, and mechanical properties of \({\text{SiO}}_2{-}{\text{Al}}_2{\text{O}}_3{-}{\text{CaO}}{-}{\text{MgO}}\) glass-ceramics. Int J Appl Ceram Technol. 2011;8(1):203. https://doi.org/10.1111/j.1744-7402.2009.02428.x.

    CAS  Article  Google Scholar 

  28. 28.

    Muniz RF, de Ligny D, Martinet C, Sandrini M, Medina AN, Rohling JH, Baesso ML, Lima SM, Andrade LHC, Guyot Y. In situ structural analysis of calcium aluminosilicate glasses under high pressure. J Phys Condens Matter. 2016;28(31):315402. https://doi.org/10.1088/0953-8984/28/31/315402.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Bechgaard TK, Mauro JC, Bauchy M, Yue Y, Lamberson LA, Jensen LR, Smedskjaer MM. Fragility and configurational heat capacity of calcium aluminosilicate glass-forming liquids. J Non-Cryst Solids. 2017;461:24. https://doi.org/10.1016/j.jnoncrysol.2017.01.033.

    CAS  Article  Google Scholar 

  30. 30.

    Moesgaard M, Yue Y. Compositional dependence of fragility and glass forming ability of calcium aluminosilicate melts. J Non-Cryst Solids. 2009;355(14–15):867. https://doi.org/10.1016/j.jnoncrysol.2009.04.004.

    CAS  Article  Google Scholar 

  31. 31.

    Reddy AA, Tulyaganov DU, Goel A, Kapoor S, Pascual MJ, Ferreira JMF. Sintering and devitrification of glass-powder compacts in the akermanite-gehlenite system. J Mater Sci. 2013;48(11):4128. https://doi.org/10.1007/s10853-013-7225-9.

    CAS  Article  Google Scholar 

  32. 32.

    Liu F, Wang Y, Chen D, Yu Y. Investigation on crystallization kinetics and microstructure of novel transparent glass ceramics containing \(\text{ Nd:NaYF }_4\) nano-crystals. Mater Sci Eng B. 2007;136(2–3):106. https://doi.org/10.1016/j.mseb.2006.09.012.

    CAS  Article  Google Scholar 

  33. 33.

    Kang J, Wang J, Cheng J, Yuan J, Hou Y, Qian S. Crystallization behavior and properties of \({\text{CaO-MgO-Al}}_2{\text{O}}_3{\text{-SiO}}_2\) glass-ceramics synthesized from granite wastes. J Non-Cryst Solids. 2017;457:111. https://doi.org/10.1016/j.jnoncrysol.2016.11.030.

    CAS  Article  Google Scholar 

  34. 34.

    Ray CS, Fang X, Day DE. New method for determining the nucleation and crystal-growth rates in glasses. J Am Ceram Soc. 2000;83(4):865. https://doi.org/10.1111/j.1151-2916.2000.tb01287.x.

    CAS  Article  Google Scholar 

  35. 35.

    Black L, Breen C, Yarwood J, Deng CS, Phipps J, Maitland G. Hydration of tricalcium aluminate (C3A) in the presence and absence of gypsum—studied by Raman spectroscopy and X-ray diffraction. J Mater Chem. 2006;16(13):1263. https://doi.org/10.1039/b509904h.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to CAPES, CNPq and FINEP for their financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. F. Muniz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muniz, R.F., Medina, A.N., Baesso, M.L. et al. Thermal properties and crystallization mechanism of undoped and Nd\(^{3+}\)-doped \(\hbox {SiO}_2\)\(\hbox {Al}_2\hbox {O}_3\)–CaO–MgO glasses. J Therm Anal Calorim 140, 275–282 (2020). https://doi.org/10.1007/s10973-019-08756-x

Download citation

Keywords

  • Aluminosilicate glasses
  • Activation energy
  • Glass-ceramics