Thermal and kinetic analyses of silicide formation at nanostructured Si/Ni interface


The problem of the manifestation of nanostructures properties that are not typical for similar macrosystems is still relevant. First of all, this concerns the stability of the thermodynamic properties of nanomaterials, which determines the operational reliability of devices based on them. In this paper, the influence of the nanostructured Si/Ni interface on the mechanism of silicide formation is studied. For this purpose, nickel/porous silicon nanocomposites have been electrochemically synthesized and analyzed using the scanning electron microscopy and the phase X-ray diffraction analysis. The solid-state interaction during heating the nanocomposites has been investigated using differential scanning calorimetry. The evolution of phase composition in the temperature range 25–500 °C has been studied. The temperature characteristics of silicide formation processes have been estimated. Kinetic analysis of the solid-state interaction has been performed using the isoconversional Ozawa–Flynn–Wall method. The dependence of effective activation energy on conversion has been calculated from the calorimetric data. The mechanism of silicide formation in the nickel/porous silicon nanocomposite is shown to be significantly different from the bulk Ni–Si diffusion couple. At the same time, it has similarities with, but also some differences from, the silicide formation in thin-film Ni–Si systems and individual Si nanowires. Methodical aspects of the characterization of the thermal behavior of nanocomposites taking into account the nanorelief of the Si–Ni interphase boundary are discussed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Murarka SP. Silicides for VLSI applications. New York: Academic Press; 1983.

    Google Scholar 

  2. 2.

    Lavoie C, d’Heurle FM, Detavernier C, Cabral C Jr. Towards implementation of a nickel silicide process for CMOS technologies. Microelectron Eng. 2003;70:144–57.

    CAS  Article  Google Scholar 

  3. 3.

    Yaish YE, Katsman A, Cohen GM, Beregovsky M. Kinetics of nickel silicide growth in silicon nanowires: from linear to square root growth. J Appl Phys. 2011;109:094303.

    Article  Google Scholar 

  4. 4.

    Lin YC, Chen Y, Xu D, Huang Y. Growth of nickel silicides in Si and Si/SiOx core/shell nanowires. Nano Lett. 2010;10:4721–6.

    CAS  Article  Google Scholar 

  5. 5.

    Katsman A, Beregovsky M, Yaish YE. Formation and evolution of nickel silicide in silicon nanowires. IEEE Trans Electron Devices. 2014;61:3363–71.

    CAS  Article  Google Scholar 

  6. 6.

    Tu KN, Ottaviani G, Gösele U, Föll H. Intermetallic compound formation in thin-film and in bulk samples of the Ni–Si binary system. J Appl Phys. 1983;54:758–63.

    CAS  Article  Google Scholar 

  7. 7.

    Gülpen JH, Kodentsov A, van Loo FJ. Growth of silicides in Ni–Si and Ni–SiC bulk diffusion couples. Z Metallkd. 1995;86:530–9.

    Google Scholar 

  8. 8.

    Olowolafe JO, Nicolet MA, Mayer JW. Influence of the nature of the Si substrate on nickel silicide formed from thin Ni films. Thin Solid Films. 1976;38:143–50.

    CAS  Article  Google Scholar 

  9. 9.

    Clevenger LA, Thompson CV, Cammarata RC, Tu KN. Reaction kinetics of nickel/silicon multilayer films. Appl Phys Lett. 1988;52:795–7.

    CAS  Article  Google Scholar 

  10. 10.

    Mangelinck D, Hoummada K, Panciera F, El Kousseifi M, Blum I, Descoins M, Bertoglio M, Portavoce A, Perrin C, Putero M. Progress in the understanding of Ni silicide formation for advanced MOS structures. Phys Status Solidi A. 2014;211:152–65.

    CAS  Article  Google Scholar 

  11. 11.

    Kummamuru RK, De La Rama L, Hu L, Vaudin MD, Efremov MY, Green ML, LaVan DA, Allen LH. Measurement of heat capacity and enthalpy of formation of nickel silicide using nanocalorimetry. Appl Phys Lett. 2009;95:181911.

    Article  Google Scholar 

  12. 12.

    Knauth P, Charai A, Bergman C, Gas P. Calorimetric analysis of thin-film reactions: experiments and modeling in the nickel/silicon system. J Appl Phys. 1994;76:5195–201.

    CAS  Article  Google Scholar 

  13. 13.

    Solanki CS, Bilyalov RR, Poortmans J, Celis JP, Nijs J, Mertens R. Self-standing porous silicon films by one-step anodizing. J Electrochem Soc. 2004;151:C307–14.

    CAS  Article  Google Scholar 

  14. 14.

    Ogata YH, Fukami K. Porous silicon and electrochemical deposition. In: Canham L, editor. Handbook of porous silicon. Basel: Springer; 2014. p. 629–37.

    Google Scholar 

  15. 15.

    Clevenger LA, Thompson CV, Tu KN. Explosive silicidation in nickel/amorphous silicon multilayer thin films. J Appl Phys. 1990;67:2894–8.

    CAS  Article  Google Scholar 

  16. 16.

    Shilyaeva Y, Gavrilov S, Matyna L. Melting of indium, tin, and zinc nanowires embedded in the pores of anodic aluminum oxide. J Therm Anal Calorim. 2014;118:937–42.

    CAS  Article  Google Scholar 

  17. 17.

    Sherchenkov A, Kozyukhin S, Babich A. Estimation of kinetic parameters for the phase change memory materials by DSC measurements. J Therm Anal Calorim. 2014;117:1509–16.

    CAS  Article  Google Scholar 

  18. 18.

    Badea M, Budrugeac P, Cucos A, Eugen S. Thermal decomposition kinetics of bis(pyridine)manganese(II) chloride. J Therm Anal Calorim. 2014;115:1999–2005.

    CAS  Article  Google Scholar 

  19. 19.

    Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc. 1965;38:1881–6.

    CAS  Article  Google Scholar 

  20. 20.

    Flynn JH, Wall LA. A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett. 1966;4:323–8.

    CAS  Article  Google Scholar 

  21. 21.

    Ravi KV. Imperfections and impurities in semiconductor silicon. New York: Wiley; 1981. p. 379.

    Google Scholar 

  22. 22.

    Lu KC, Wu WW, Wu HW, Tanner CM, Chang JP, Chen LJ, Tu KN. In situ control of atomic-scale Si layer with huge strain in the nanoheterostructure NiSi/Si/NiSi through point contact reaction. Nano Lett. 2007;7:2389–94.

    CAS  Article  Google Scholar 

Download references


This work was performed as part of the state assignment No. 16.2653.2017/4.6 of the Ministry of Science and Higher Education of the Russian Federation.

Author information



Corresponding author

Correspondence to Yulia Shilyaeva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shilyaeva, Y., Volovlikova, O., Smirnov, D. et al. Thermal and kinetic analyses of silicide formation at nanostructured Si/Ni interface. J Therm Anal Calorim 138, 2339–2345 (2019).

Download citation


  • Nanostructured silicon
  • Nickel
  • Silicides
  • DSC
  • Phase formation
  • Activation energy