Influence of microwave irradiation on thermal properties of PVA and PVA/graphene nanocomposites

Abstract

This article discusses the effect of microwave irradiation on the thermal properties of poly(vinyl alcohol)/graphene nanocomposites, prepared using a solution casting technique. Samples were subjected to microwave radiation for 5, 10 and 15 min at a constant power of 200 watts. The crystallinity and thermal stability of the irradiated samples were studied by differential scanning calorimetry (DSC) and thermogravimetric analysis. Reduction in crystallinity and thermal stability of PVA was observed with incorporation of graphene due to restricted dynamic movement of chains and synergistic instability, respectively. Microwave irradiation for 5 min improved the crystallinity and thermal stability of the nanocomposites. However, further irradiation caused a decrease in the crystallinity as well as in the thermal stability due to degradation. Moreover, the isothermal crystallization kinetics were studied by DSC. An increase in the crystallization rate was observed with graphene incorporation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Goodship V. Polyvinyl alcohol: materials, processing and applications (Rapra review reports). Rapra Rev Reports. Shrewsbury Rapra Technology; 2009.

  2. 2.

    Sreekumar PA, Al-Harthi MA, De SK. Reinforcement of starch/polyvinyl alcohol blend using nano-titanium dioxide. J Compos Mater. 2012;46:3181–7.

    Google Scholar 

  3. 3.

    Sreekumar PA, Al-Harthi MA, De SK. Effect of glycerol on thermal and mechanical properties of polyvinyl alcohol/starch blends. J Appl Polym Sci. 2012;123:135–42.

    CAS  Google Scholar 

  4. 4.

    Zubair M, Jose J, Emwas AH, Al-Harthi MA. Effect of modified graphene and microwave irradiation on the mechanical and thermal properties of poly(styrene-co-methyl methacrylate)/graphene nanocomposites. Surf Interface Anal. 2014;46:630–9.

    CAS  Google Scholar 

  5. 5.

    Sadasivuni KK, Ponnamma D, Kim J, Thomas S. Graphene-based polymer nanocomposites in electronics. Springer; 2015. p. 1–382. https://doi.org/10.1007/978-3-319-13875-6.

    Google Scholar 

  6. 6.

    Park S, Ruoff RS. Chemical methods for the production of graphenes. Nat Nanotechnol. 2009;4:217–24.

    CAS  PubMed  Google Scholar 

  7. 7.

    Jose J, De SK, AlMa’adeed MAA, Bhadra Dakua J, Sreekumar PA, Sougrat R, et al. Compatibilizing role of carbon nanotubes in poly(vinyl alcohol)/starch blend. Starch/Staerke. 2015;67:147–53. https://doi.org/10.1002/star.201400074.

    CAS  Article  Google Scholar 

  8. 8.

    Tjong SC. Thermal properties of polymer nanocomposites. Polymer composites with carbonaceous nanofillers. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2012. p. 103–41.

    Google Scholar 

  9. 9.

    Erukhimovitch V, Baram J. Crystallization kinetics. Phys Rev B. 1994;50:5854–6. https://doi.org/10.1103/PhysRevB.50.5854.

    CAS  Article  Google Scholar 

  10. 10.

    Lorenzo AT, Arnal ML, Albuerne J, Müller AJ. DSC isothermal polymer crystallization kinetics measurements and the use of the Avrami equation to fit the data: guidelines to avoid common problems. Polym Test. 2007;26:222–31.

    CAS  Google Scholar 

  11. 11.

    Feng L, Li W, Ren J, Qu X. Electrochemically and DNA-triggered cell release from ferrocene/β-cyclodextrin and aptamer modified dual-functionalized graphene substrate. Nano Res. 2015;8:887–99.

    CAS  Google Scholar 

  12. 12.

    Wu G, Tang Y, Weng R. Dispersion of nano-carbon filled polyimide composites using self-degradated low molecular poly(amic acid) as impurity-free dispersant. Polym Degrad Stab. 2010;95:1449–55.

    CAS  Google Scholar 

  13. 13.

    McIntosh D, Khabashesku VN, Barrera EV. Benzoyl peroxide initiated in situ functionalization, processing, and mechanical properties of single-walled carbon nanotube-polypropylene composite fibers. J Phys Chem C. 2007;111:1592–600.

    CAS  Google Scholar 

  14. 14.

    Tang Y, Hu X, Liu D, Guo D, Zhang J. Effect of microwave treatment of graphite on the electrical conductivity and electrochemical properties of polyaniline/graphene oxide composites. Polymers (Basel). 2016;8:399.

    Google Scholar 

  15. 15.

    Alsharaeh EH. Polystyrene-poly(methyl methacrylate) silver nanocomposites: Significant modification of the thermal and electrical properties by microwave irradiation. Materials (Basel). 2016;9:458.

    Google Scholar 

  16. 16.

    Charlesby A. Effect of high-energy radiation on long-chain polymers. Nature. 1953;171:167.

    CAS  Google Scholar 

  17. 17.

    Al-Harthi MA. Influence of applying microwave radiation on the LDPE/MWCNTs nanocomposite. Polym Compos. 2014;35:2036–42.

    CAS  Google Scholar 

  18. 18.

    Alsharaeh EH, Othman AA, Aldosari MA. Microwave irradiation effect on the dispersion and thermal stability of RGO nanosheets within a polystyrene matrix. Materials (Basel). 2014;7:5212–24.

    CAS  Google Scholar 

  19. 19.

    Zubair M, Shehzad F, Al-Harthi MA. Impact of modified graphene and microwave irradiation on thermal stability and degradation mechanism of poly (styrene-co-methyl meth acrylate). Thermochim Acta. 2016;633:48–55.

    CAS  Google Scholar 

  20. 20.

    Zubair M, Jose J, Al-Harthi MA. Evaluation of mechanical and thermal properties of microwave irradiated poly (styrene-co-methyl methacrylate)/graphene nanocomposites. Compos Interfaces. 2015;22:595–610.

    CAS  Google Scholar 

  21. 21.

    Afzal HM, Mitu SSI, Al-Harthi MA. Microwave radiations effect on electrical and mechanical properties of poly(vinyl alcohol) and PVA/graphene nanocomposites. Surf Interfaces. 2018;13:65–78.

    CAS  Google Scholar 

  22. 22.

    Shehzad F, Daud M, Al-Harthi MA. Synthesis, characterization and crystallization kinetics of nanocomposites prepared by in situ polymerization of ethylene and graphene. J Therm Anal Calorim. 2016;123:1501–11.

    CAS  Google Scholar 

  23. 23.

    Papageorgiou GZ, Palani A, Gilliopoulos D, Triantafyllidis KS, Bikiaris DN. Mechanical properties and crystallization of high-density polyethylene composites with mesostructured cellular silica foam. J Therm Anal Calorim. 2013;113:1651–65.

    CAS  Google Scholar 

  24. 24.

    Abdul-Majeed BA, Hussain HK, Al-Sultanee NAK. Effect of annealing on the crystallization of poly vinyl chloride for drug delivery system. Iraqi J Chem Pet Eng. 2012;13:29–36.

    Google Scholar 

  25. 25.

    Johra FT, Lee J-W, Jung W-G. Facile and safe graphene preparation on solution based platform. J Ind Eng Chem. 2014;20:2883–7.

    CAS  Google Scholar 

  26. 26.

    Ahad N, Saion E, Gharibshahi E. Structural, thermal, and electrical properties of Pva-sodium salicylate solid composite polymer electrolyte. J Nanomater. 2012;2012. https://doi.org/10.1155/2012/857569.

    Google Scholar 

  27. 27.

    Mahendia S, Heena, Kandhol G, Deshpande UP, Kumar S. Determination of glass transition temperature of reduced graphene oxide-poly(vinyl alcohol) composites using temperature dependent Fourier transform infrared spectroscopy. J Mol Struct. 2016;1111:46–54. https://doi.org/10.1016/j.molstruc.2016.01.072.

    CAS  Article  Google Scholar 

  28. 28.

    Jose J, Al-Harthi MA, AlMa’adeed MAA, Dakua JB, De SK. Effect of graphene loading on thermomechanical properties of poly(vinyl alcohol)/starch blend. J Appl Polym Sci. 2015;132:41827.

    Google Scholar 

  29. 29.

    Medhekar NV, Ramasubramaniam A, Ruoff RS, Shenoy VB. Hydrogen bond networks in graphene oxide composite paper: structure and mechanical properties. ACS Nano. 2010;4:2300–6.

    CAS  PubMed  Google Scholar 

  30. 30.

    Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Cuo T, et al. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater. 2009;19:2297–302.

    CAS  Google Scholar 

  31. 31.

    El-Sawy NM, El-Arnaouty MB, Abdel Ghaffar AM. Gamma irradiation effect on the non-crosslinked and crosslinked poly(vinyl alcohol) films. In: Proceedings of 9 international conference nuclear science and applications. Egypt: The Egyptian Society of Nuclear Sciences and Applications (ESNSA) (Egypt); 2008. p. 1239.

  32. 32.

    Gongxu L, Hongying C, Dongyuan L. The degradation in solid state of polyvinyl alcohol by gamma-irradiation. Radiat Phys Chem Pergamon. 1993;42:229–32.

    Google Scholar 

  33. 33.

    Bhat NV, Nate MM, Kurup MB, Bambole VA, Sabharwal S. Effect of γ-radiation on the structure and morphology of polyvinyl alcohol films. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms. 2005;237:585–92.

    CAS  Google Scholar 

  34. 34.

    Zhang SJ, Yu HQ. Radiation-induced degradation of polyvinyl alcohol in aqueous solutions. Water Res. 2004;38:309–16.

    CAS  PubMed  Google Scholar 

  35. 35.

    Ferrari AC, Robertson J. Resonant Raman spectroscopy of disordered, amorphous, and diamond-like carbon. Phys Rev B Condens Matter Mater Phys. 2001;64:075414.

    Google Scholar 

  36. 36.

    Dresselhaus MS, Dresselhaus G, Saito R. Physics of carbon nanotubes. Carbon N Y. 1995;33:883–91.

    CAS  Google Scholar 

  37. 37.

    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon N Y. 2007;45:1558–65.

    CAS  Google Scholar 

  38. 38.

    Sharma SK, Prakash J, Pujari PK. Effects of the molecular level dispersion of graphene oxide on the free volume characteristics of poly(vinyl alcohol) and its impact on the thermal and mechanical properties of their nanocomposites. Phys Chem Chem Phys R Soc Chem. 2015;17:29201–9.

    CAS  Google Scholar 

  39. 39.

    Thayumanavan N, Tambe P, Joshi G, Shukla M. Effect of sodium alginate modification of graphene (by anion- π type of interaction) on the mechanical and thermal properties of polyvinyl alcohol (PVA) nanocomposites. Compos Interfaces. 2014;21:487–506.

    CAS  Google Scholar 

  40. 40.

    Torikai A, Geetha R, Nagaya S, Fueki K. Radiation-induced degradation of polyethylene: role of amorphous region in the formation of oxygenated products and the mechanical properties. Polym Degrad Stab. 1986;16:199–212.

    CAS  Google Scholar 

  41. 41.

    Mishra S, Bajpai R, Katare R, Bajpai AK. Radiation induced crosslinking effect on semi-interpenetrating polymer networks of poly(vinyl alcohol). Express Polym Lett. 2007;1:407–15.

    CAS  Google Scholar 

  42. 42.

    Avrami M. Kinetics of phase change. I general theory. J Chem Phys. 1939;7:1103.

    CAS  Google Scholar 

  43. 43.

    Lee S, Hong J-Y, Jang J. The effect of graphene nanofiller on the crystallization behavior and mechanical properties of poly(vinyl alcohol). Polym Int. 2013;62:901–8.

    CAS  Google Scholar 

  44. 44.

    Oral E, Godleski-Beckos C, Ghali BW, Lozynsky AJ, Muratoglu OK. Effect of cross-link density on the high pressure crystallization of UHMWPE. J Biomed Mater Res Part B Appl Biomater. 2009;90 B:720–9.

    Google Scholar 

  45. 45.

    Saroj AL, Chaurasia SK, Kataria S, Singh RK. Isothermal and non-isothermal crystallization kinetics of PVA + ionic liquid [BDMIM][BF 4]-based polymeric films. Phase Transit. 2016;89:578–97.

    CAS  Google Scholar 

  46. 46.

    Trujillo M, Arnal ML, Müller AJ, Laredo E, Bredeau S, Bonduel D, et al. Thermal and morphological characterization of nanocomposites prepared by in situ polymerization of high-density polyethylene on carbon nanotubes. Macromolecules. 2007;40:6268–76.

    CAS  Google Scholar 

  47. 47.

    Fillon B, Lotz B, Thierry A, Wittmann JC. Self-nucleation and enhanced nucleation of polymers. Definition of a convenient calorimetric “efficiency scale” and evaluation of nucleating additives in isotactic polypropylene (α phase). J Polym Sci Part B Polym Phys. 1993;31:1395–405.

    CAS  Google Scholar 

  48. 48.

    Xin S, Li Y, Zhao H, Bian Y, Li W, Han C, et al. Confinement crystallization of poly(l-lactide) induced by multiwalled carbon nanotubes and graphene nanosheets. J Therm Anal Calorim. 2015;122:379–91. https://doi.org/10.1007/s10973-015-4695-9.

    CAS  Google Scholar 

  49. 49.

    Yang H, Xu S, Jiang L, Dan Y. Thermal decomposition behavior of poly(vinyl alcohol) with different hydroxyl content. J Macromol Sci Part B Phys. 2012;51:464–80.

    CAS  Google Scholar 

  50. 50.

    Holland BJ, Hay JN. The thermal degradation of poly(vinyl alcohol). Polymer. 2001;42:6775–83.

    CAS  Google Scholar 

  51. 51.

    Barroso-Bujans F, Alegría A, Pomposo JA, Colmenero J. Thermal stability of polymers confined in graphite oxide. Macromolecules. 2013;46:1890–8.

    CAS  Google Scholar 

  52. 52.

    Gao W, Alemany LB, Ci L, Ajayan PM. New insights into the structure and reduction of graphite oxide. Nat Chem. 2009;1:403–8.

    CAS  PubMed  Google Scholar 

  53. 53.

    Thomas PS, Guerbois J, Russell GF, Briscoe BJ. Ftir study of the thermal degradation of poly(vinyl alcohol). J Therm Anal Calorim. 2007;64:501–8.

    Google Scholar 

  54. 54.

    Olad A. Polymer/clay nanocomposites. In: Nalwa HS, editor. Encyclopedia of nanoscience and nanotechnology, vol. 8. Washington: American Scientific Publishers; 1996. p. 58883.

    Google Scholar 

  55. 55.

    Paul DR, Robeson LM. Polymer nanotechnology: nanocomposites. Polymer (Guildf). 2008;49:3187–204.

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Deanship of Research King Fahd University of Petroleum & Minerals (KFUPM) for supporting this work under fast track project (Project No. FT161010).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mamdouh A. Al-Harthi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1180 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Afzal, H.M., Shehzad, F., Zubair, M. et al. Influence of microwave irradiation on thermal properties of PVA and PVA/graphene nanocomposites. J Therm Anal Calorim 139, 353–365 (2020). https://doi.org/10.1007/s10973-019-08419-x

Download citation

Keywords

  • Poly(vinyl alcohol)
  • Graphene
  • Microwave radiation
  • Nanocomposites
  • Crystallization kinetics
  • Degradation kinetics