Skip to main content
Log in

Thermal and hydrodynamic performance of a microchannel heat sink with carbon nanotube nanofluids

Effect of concentration and channel section

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Increasing heat fluxes in decreasing sizes of a microchannel heat sink have necessitated studies into better systems, in particular a more capable coolant for improved thermal management. Nanofluids have been at the forefront with their higher thermal conductivity as compared to the base fluid alone. However, few investigations have looked into the role played by surfactants, a component used for dispersion and stability of nanofluids, and their influence on thermophysical properties and thermal performance. Optimized performances of carbon nanotube nanofluids with different surfactants at different volume fractions under laminar flow are studied. Using the thermal resistance model and experimental data for thermal conductivity and viscosity of nanofluids, the thermal resistance and pumping power are simultaneously minimized using multi-objective genetic algorithm. Results showed that the nanotube nanofluid with lignin as the surfactant performed better thermally and hydrodynamically, due to lower viscosity at high carbon nanotube concentration compared to the nanotube nanofluid with sodium polycarboxylate surfactant. As an example, a 29% and 28% increase in pressure drop is found for sodium polycarboxylate-based nanofluid at a volume fraction of 0.1% for a circular and square MCHS, respectively. A similar pattern is observed at higher volume fraction as well, even higher pressure drop with increasing volume fraction. Also, it is shown that microchannel heat sink with circular cross section performed better than that with square section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(adapted from [14])

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

L :

Length

W :

Width

t :

Substrate thickness

H c :

Channel height

W c :

Channel width

W w :

Wall width

R cond :

Conduction thermal resistance

R cap :

Capacitive thermal resistance

R conv :

Convective thermal resistance

\( R_{\text{total}} \) :

Total thermal resistance

G :

Coolant flow rate

\( k_{\text{s}} \) :

Thermal conductivity of substrate

Nu :

Nusselt number

Re :

Reynolds number

k :

Thermal conductivity of nanofluid

ρ :

Density of nanofluid

μ :

Viscosity of nanofluid

c p :

Specific heat capacity of nanofluid

α :

Hydraulic diameter

β :

Wall width-to-channel width ratio

ΔP :

Pressure drop

References

  1. Tuckerman DB, Pease RFW. High-performance heat sinking for VLSI. IEEE Electron Device Lett. 1981;5:126–9.

    Article  Google Scholar 

  2. Kleiner MB, Kuhn SA, Haberger K. High performance forced air cooling scheme employing microchannel heat exchangers. IEEE Trans Compon Packag Manuf Technol Part A. 1995;20:795–804.

    Article  Google Scholar 

  3. Gamrat G, Marinet MF, Asendrych D. Conduction and entrance effects on laminar liquid flow and heat transfer in rectangular microchannels. Int J Heat Mass Transf. 2005;48:2943–54.

    Article  CAS  Google Scholar 

  4. Peng XF, Peterson GP, Wang BX. Heat transfer characteristics of water flowing through microchannels. J Exp Heat Transf. 1995;7:265–83.

    Article  Google Scholar 

  5. Choquette SF, Faghri M, Charmchi M, Asako Y. Optimum design of microchannel heat sinks. ASME DSC. 1996;59:115–26.

    Google Scholar 

  6. Zhimin W, Fah CK. Optimum thermal design of microchannel heat sinks. In: Proceeding of the 1997 1st electronic packaging technology conference, EPTC, Singapore; 1997. p. 123–129.

  7. Kosar A. Effect of substrate thickness and material on heat transfer in microchannel heat sinks. Int J Therm Sci. 2010;49:635–42.

    Article  CAS  Google Scholar 

  8. Perret C, Schaeffer Ch, Boussey J. Microchannel integrated heat sinks in silicon technology. In: Proceedings of the 1998 IEEE industry applications conference, USA, vol. 2; 1998, p. 1051–1055.

  9. Hestroni G, Mosyak A, Pogerbnyak E, Yarin LP. Heat transfer in microchannels: comparison of experiments with theory and numerical results. Int J Heat Mass Transf. 2005;48:5580–601.

    Article  CAS  Google Scholar 

  10. McHale J, Garimella SV. Heat transfer in trapezoidal microchannel of various aspect ratio. Int J Heat Mass Transf. 2010;53(19–20):3683–91.

    Google Scholar 

  11. Ghazali-Mohd N, Oh JT, Nguyen BC, Choi KI, Ahmad R. Comparison of the optimized thermal performance of square and circular ammonia-cooled microchannel heat sink with genetic algorithm. Energy Convers Manag. 2015;102:59–65.

    Article  CAS  Google Scholar 

  12. Moradikazerouni A, Afrand M, Alsarraf J, Mahian O, Wongwises S, Tran M-D. Comparison of the effect of five different entrance channel shapes of a micro-channel heat sink in forced convection with application to cooling a supercomputer circuit board. Appl Therm Eng. 2019;150:1078–89.

    Article  CAS  Google Scholar 

  13. Adham AM, Mohd-Ghazali N, Ahmad R. Optimization of an ammonia-cooled rectangular microchannel heat sink using multi-objective non dominated sorting genetic algorithm (NSGA2). Heat Mass Transf. 2012;48(10):1723–33.

    Article  CAS  Google Scholar 

  14. Hung TC, Yan WM, Wang XD, Chang CY. Heat transfer enhancement in microchannel heat sinks using nanofluids. Int J Heat Mass Transf. 2012;55(9–10):2559–70.

    Article  CAS  Google Scholar 

  15. Halelfadl S, Adham AM, Mohd-Ghazali N, Maré T, Estellé P, Ahmad R. Optimization of thermal performances and pressure drop of rectangular microchannel heat sink using aqueous carbon nanotubes based nanofluid. Appl Therm Eng. 2014;62(2):492–9.

    Article  CAS  Google Scholar 

  16. Adham AM, Mohd-Ghazali N, Ahmad R. Thermal and hydrodynamic analysis of microchannel heat sinks: a review. Renew Sustain Energy Rev. 2013;21:614–22.

    Article  Google Scholar 

  17. Li Ping, Luo Yaoyuan, Zhang Di, Xie Yonghui. Flow and heat transfer characteristics and optimization study on the water-cooled microchannel heat sinks with dimple and pin-fin. Int J Heat Mass Transf. 2018;119:152–62.

    Article  Google Scholar 

  18. Li YF, Xia GD, Ma DD, Jia YT, Wang J. Characteristics of laminar flow and heat transfer in microchannel heat sink with triangular cavities and rectangular ribs. Int J Heat Mass Transf. 2016;98:17–28.

    Article  Google Scholar 

  19. Moradikazerouni A, Afrand M, Alsarraf J, Wongwises S, Asadi A, Nguyen TK. Investigation of a computer CPU heat sink under laminar forced convection using a structural stability method. Int J Heat Mass Transf. 2019;134:1218–26.

    Article  Google Scholar 

  20. Vinoth R, Senthil Kumar D. Channel cross section effect on heat transfer performance of oblique finned microchannel heat sink. Int Commun Heat Mass Transf. 2017;87:270–6.

    Article  CAS  Google Scholar 

  21. Duangthongsuk W, Wongwises S. An experimental investigation on the heat transfer and pressure drop characteristics of nanofluid flowing in microchannel with multiple zigzag flow channel structures. Exp Therm Fluid Sci. 2017;87:30–9.

    Article  CAS  Google Scholar 

  22. Vo DD, Alsarraf J, Moradikazerouni A, Afrand M, Salehipour H, Qi C. Numerical investigation of γ-AlOOH nano-fluid convection performance in a wavy channel considering various shapes of nanoadditives. Powder Technol. 2019;345:649–57.

    Article  CAS  Google Scholar 

  23. Byrne D, Hart RA, Da Silva AK. Experimental thermal-hydraulic evaluation of CuO nanofluids in microchannels at various concentrations with and without suspension enhancers. Int J Heat Mass Transf. 2012;55(9–10):2684–91.

    Article  CAS  Google Scholar 

  24. Adham AM, Mohd-Ghazali N, Ahmad R. Optimization of nanofluid-cooled microchannel heat sink. Therm Sci. 2016;20:109–18.

    Article  Google Scholar 

  25. Mahian O, Kolsi L, Amani M, Estellé P, Ahmadi G, Kleinstreuer C, Marshall JS, Siavashi M, Taylor RA, Niazmand H, Wongwises S, Hayat T, Kolanjiyil A, Kasaeian A, Pop I. Recent advances in modeling and simulation of nanofluid flows-part I: fundamentals and theory. Phys Rep. 2019;790:1–48.

    Article  CAS  Google Scholar 

  26. Maré T, Estellé P, Halelfadl S, Mohd-Ghazali N. Consideration of carbon nanotube-based nanofluid in thermal transfer. Jurnal Teknologi. 2016;78(8–4):41–8.

    Google Scholar 

  27. Arani AA, Akbari OA, Safaei MR, Alrashed AAAA, Ahmadi GR, Nguyen TK. Heat transfer improvement of water/single-wall carbon nanotubes (SWCNT) nanofluid in a novel design of a truncated double-layered microchannel heat sink. Int J Heat Mass Transf. 2017;113:780–95.

    Article  CAS  Google Scholar 

  28. Sarafraz MM, Nikkhaz V, Nakhjavani M, Arya A. Fouling formation and thermal performance of aqueous carbon nanotubes nanofluid in a heat sink with rectangular microchannel. App Therm Eng. 2017;123:29–39.

    Article  CAS  Google Scholar 

  29. Abedin A, Karimipour A, Toghraie D. The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (MWCNTs) nanofluid in the microchannel heat sink with slip boundary condition. J Therm Anal Calorim. 2018;131(2):1553–66.

    Article  CAS  Google Scholar 

  30. Su F, Mu X, Lan Z. The effect of carbon nanotubes on the physical properties of a binary nanofluid. J Taiwan Inst Chem Eng. 2011;42:252–7.

    Article  CAS  Google Scholar 

  31. Murshed SMS, Nieto de Castro CA. Superior thermal features of carbon nanotubes-based nanofluids—a review. Renew Sustain Energy Rev. 2014;37:155–67.

    Article  CAS  Google Scholar 

  32. Murshed SMS, Estellé P. A state of the art review on viscosity of nanofluids. Renew Sustain Energy Rev. 2017;76:1134–52.

    Article  CAS  Google Scholar 

  33. Nik-Mazlam NAF, Mohd-Ghazali N, Mare T, Estellé P, Halelfadl S. Thermal and hydrodynamic performance of a microchannel heat sink cooled with carbon nanotubes nanofluid. Jurnal Teknologi. 2016;78(10–2):69–77.

    Google Scholar 

  34. Minea AA, Estellé P. Numerical study on CNT nanofluids behavior in laminar pipe flow. J Mol Liq. 2018;271:281–9.

    Article  CAS  Google Scholar 

  35. Estellé P, Halelfadl S, Maré T. Thermal conductivity of CNT water based nanofluids: experimental trends and models overview. J Therm Eng. 2015;1(2):381–90.

    Article  Google Scholar 

  36. Pak BC, Cho YI. Hydrodynamic and heat transfer study of dispersed fluids with sub-micron metallic particles. Exp Heat Transf. 1998;11:151–70.

    Article  CAS  Google Scholar 

  37. O’Hanley H, Buangiorno J, McKrell T, Hu LW. Measurement and model validation of nanofluid specific heat capacity with differential scanning calorimetry. Adv Mech Eng. 2012;4:181079.

    Article  CAS  Google Scholar 

  38. Estellé P, Halelfadl S, Maré T. Thermophysical properties and heat transfer performance of carbon nanotubes water-based nanofluids. J Therm Anal Calorim. 2017;127:2075–81.

    Article  CAS  Google Scholar 

  39. Estellé P, Halelfadl S, Maré T. Lignin as dispersant for water-based carbon nanotube nanofluids: impact on viscosity and thermal conductivity. Int Commun Heat Mass Transf. 2014;57:8–12.

    Article  CAS  Google Scholar 

  40. Halelfadl S. Caractérisation des propriétés thermo-physiques et d’échanges de chaleur des nanofluides à base de nanotubes de carbone. Ph.D. Thesis, Insa Rennes, December 2014.

Download references

Acknowledgements

The authors would like to thank the Universiti Teknologi Malaysia for the research grant Vot19H60 for the funding to do the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrice Estellé.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohd-Ghazali, N., Estellé, P., Halelfadl, S. et al. Thermal and hydrodynamic performance of a microchannel heat sink with carbon nanotube nanofluids. J Therm Anal Calorim 138, 937–945 (2019). https://doi.org/10.1007/s10973-019-08260-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08260-2

Keywords

Navigation