Skip to main content
Log in

Silanization of di-n-octyldichlorosilane as a route to improve the integration of titanium dioxide in polypropylene

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this work, a di-n-alkyldichlorosilane (di-n-octyldichlorosilane) was used as an agent to improve the integration of titanium dioxide particles into isotactic polypropylene (iPP) matrix. The thermal stability of the silane coating was studied to confirm the applicability of these particles under extrusion temperature; we found by infrared spectrometry and mass spectroscopy that silanization remains stable at temperatures around 400 °C. The non-isothermal analysis of the crystallization process, conducted by differential scanning calorimetry, showed a decrement in the energetic requirements to complete the process when we used the silanized particles and filled the iPP at 0.5% in mass. Also, these silanized particles demonstrate the capability to be a selective α nucleating agent in comparison with the neat TiO2 particles that showed a slight portion of β crystals according to the wide-angle X-ray diffraction analysis.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Xu T, Wang Y, He D, Xu Y, Li Q, Shen C. Nucleation effect of layered metal phosphonate on crystallization of isotactic polypropylene. Polym Test. 2014;34:131–9. https://doi.org/10.1016/j.polymertesting.2014.01.010.

    Article  CAS  Google Scholar 

  2. Guan Z, Lin Z, Mai K. Monetaria moneta as a novel β-nucleating agent for isotactic polypropylene. Compos Sci Technol. 2013;87:58–63. https://doi.org/10.1016/j.compscitech.2013.08.003.

    Article  CAS  Google Scholar 

  3. Esthappan SK, Kuttappan SK, Joseph R. Thermal and mechanical properties of polypropylene/titanium dioxide nanocomposite fibers. Mater Des. 2012;37:537–42. https://doi.org/10.1016/j.matdes.2012.01.038.

    Article  CAS  Google Scholar 

  4. Wang S, Zhang J. Effect of nucleating agent on the crystallization behavior, crystal form and solar reflectance of polypropylene. Sol Energy Mater Sol Cells. 2013;117:577–84. https://doi.org/10.1016/j.solmat.2013.07.033.

    Article  CAS  Google Scholar 

  5. Esthappan SK, Kuttappan SK, Joseph R. Effect of titanium dioxide on the thermal ageing of polypropylene. Polym Degrad Stab. 2012;97:615–20. https://doi.org/10.1016/j.polymdegradstab.2012.01.006.

    Article  CAS  Google Scholar 

  6. Zhou RJ, Burkhart T. Polypropylene/SiO2 nanocomposites filled with different nanosilicas: thermal and mechanical properties, morphology and interphase characterization. J Mater Sci. 2011;46:1228–38.

    Article  CAS  Google Scholar 

  7. Mina MF, Seema S, Matin R, Rahaman MJ, Sarker RB, Gafur MA, et al. Improved performance of isotactic polypropylene/titanium dioxide composites: effect of processing conditions and filler content. Polym Degrad Stab. 2009;94:183–8. https://doi.org/10.1016/j.polymdegradstab.2008.11.006.

    Article  CAS  Google Scholar 

  8. Pan C, Qin W, Chen L, Xin Z, Zhao S, Ye C. A novel β-nucleating agent for isotactic polypropylene. J Therm Anal Calorim. 2018;134:2029–40. https://doi.org/10.1007/s10973-018-7768-8.

    Article  CAS  Google Scholar 

  9. Yu Y, Zeng F, Chen J, Kang J, Yang F, Cao Y, et al. Effects of ordered structure on non-isothermal crystallization kinetics and subsequent melting behavior of β-nucleated isotactic polypropylene/graphene oxide composites. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7776-8.

    Article  Google Scholar 

  10. Tsang YY, Mak CW, Liebich C, Lam SW, Sze ETP, Chan KM. Microplastic pollution in the marine waters and sediments of Hong Kong. Mar Pollut Bull. 2017;115:20–8. https://doi.org/10.1016/j.marpolbul.2016.11.003.

    Article  PubMed  CAS  Google Scholar 

  11. Ter Halle A, Ladirat L, Martignac M, Mingotaud AF, Boyron O, Perez E. To what extent are microplastics from the open ocean weathered? Environ Pollut. 2017;227:167–74. https://doi.org/10.1016/j.envpol.2017.04.051.

    Article  PubMed  CAS  Google Scholar 

  12. Lenz R, Enders K, Stedmon CA, MacKenzie DMA, Nielsen TG. A critical assessment of visual identification of marine microplastic using Raman spectroscopy for analysis improvement. Mar Pollut Bull. 2015;100:82–91. https://doi.org/10.1016/j.marpolbul.2015.09.026.

    Article  PubMed  CAS  Google Scholar 

  13. Ammala A, Bateman S, Dean K, Petinakis E, Sangwan P, Wong S, et al. An overview of degradable and biodegradable polyolefins. Prog Polym Sci. 2011. https://doi.org/10.1016/j.progpolymsci.2010.12.002.

    Article  Google Scholar 

  14. Carlsson D. The photodegradation of polypropylene films. II. Photolysis of ketonic oxidation products. Macromolecules. 1969;2:597–606.

    Article  CAS  Google Scholar 

  15. González A, Pérez E, Almendarez A, Villegas A, Vallejo-Montesinos J. Calcium pimelate supported on TiO2 nanoparticles as isotactic polypropylene prodegradant. Polym Bull. 2016;73:39–51.

    Article  CAS  Google Scholar 

  16. Allen N, Edge M, Corrales T, Catalina F. Stabiliser interactions in the thermal and photooxidation of titanium dioxide pigmented polypropylene films. Polym Degrad. 1998;61:139–49.

    Article  CAS  Google Scholar 

  17. Diebold U. The surface science of titanium dioxide. Surf Sci Rep. 2003;48:53–229.

    Article  CAS  Google Scholar 

  18. Bonhôte P, Gogniat E, Grätzel M, Ashrit P. Novel electrochromic devices based on complementary nanocrystalline TiO2 and WO3 thin films. Thin Solid Films. 1999;350:269–75.

    Article  Google Scholar 

  19. Solís-Gómez A, Neira-Velázquez MG, Morales J, Sánchez-Castillo MA, Pérez E. Improving stability of TiO2 particles in water by RF-plasma polymerization of poly(acrylic acid) on the particle surface. Colloids Surf A Physicochem Eng Asp. 2014;451:66–74. https://doi.org/10.1016/j.colsurfa.2014.03.021.

    Article  CAS  Google Scholar 

  20. Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications and applications. Chem Rev. 2007;107:2891–959.

    Article  CAS  Google Scholar 

  21. Henderson MA. The interaction of water with solid surfaces: fundamental aspects revisited. Surf Sci Rep. 2002;46:1–308.

    Article  CAS  Google Scholar 

  22. Wang R, Hashimoto K, Fujishima A, Chikuni M, Kojima E, Kitamura A, et al. Light-induced amphiphilic surfaces. Nature. 1997;388:431. https://doi.org/10.1038/41233.

    Article  CAS  Google Scholar 

  23. Vallejo-montesinos J, Cesar J, Martínez L, Montejano-carrizales JM, Pérez E, Pérez JB, et al. Passivation of titanium oxide in polyethylene matrices using polyelectrolytes as titanium dioxide surface coating. Mech Mater Sci Eng 2017;8. http://mmse.xyz/en/passivation-of-titanium-oxide-in-polyethylene-matrices-using-polyelectrolytes-as-titanium-dioxide-surface-coating/. Accessed 31 Mar 2017.

  24. Gonzalez-Calderon JA, Vallejo-Montesinos J, Mata-Padilla JM, Pérez E, Almendarez-Camarillo A. Effective method for the synthesis of pimelic acid/TiO2 nanoparticles with a high capacity to nucleate β-crystals in isotactic polypropylene nanocomposites. J Mater Sci. 2015;50:7998–8006. https://doi.org/10.1007/s10853-015-9365-6.

    Article  CAS  Google Scholar 

  25. Gonzalez-Calderon JA, Vallejo-Montesinos J, Almendarez-Camarillo A, Montiel R, Pérez E. Non-isothermal crystallization analysis of isotactic polypropylene filled with titanium dioxide particles modified by a dicarboxylic acid. Thermochim Acta. 2016;631:8–17.

    Article  CAS  Google Scholar 

  26. Ren X-Q, Zhang Y-F. Effects of different metal salts of aliphatic dicarboxylic acids on the formation of β-crystalline form in isotactic polypropylene. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7958-4.

    Article  Google Scholar 

  27. Zhang Y-F, Lin X-F, Chen S. Preparation and nucleation effect of a novel compound nucleating agent carboxylated graphene/calcium pimelate for isotactic polypropylene. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7886-3.

    Article  Google Scholar 

  28. González-Rodríguez V, Lizeth Zapata-Tello D, Vallejo-Montesinos J, Zárraga Núñez R, Gonzalez-Calderon JA, Pérez E. Improving titanium dioxide dispersion in water through surface functionalization by a dicarboxylic acid. J Dispers Sci Technol. 2018. https://doi.org/10.1080/01932691.2018.1496828.

    Article  Google Scholar 

  29. Han X, Wang L, Li J, Zhan X, Chen J, Yang J. Tuning the hydrophobicity of ZSM-5 zeolites by surface silanization using alkyltrichlorosilane. Appl Surf Sci. 2011;257:9525–31.

    Article  CAS  Google Scholar 

  30. Zhan X, Li J, Fan C, Han X. Pervaporation separation of ethanol/water mixtures with chlorosilane modified silicalite-1/PDMS hybrid membranes. Chin J Polym Sci. 2010;28:625–35. https://doi.org/10.1007/s10118-010-9136-4.

    Article  CAS  Google Scholar 

  31. Kulkarni SA, Ogale SB, Vijayamohanan KP. Tuning the hydrophobic properties of silica particles by surface silanization using mixed self-assembled monolayers. J Colloid Interface Sci. 2008;318:372–9.

    Article  CAS  Google Scholar 

  32. López-Zamora L, Martínez-Martínez HN, González-Calderón JA. Improvement of the colloidal stability of titanium dioxide particles in water through silicon based coupling agent. Mater Chem Phys. 2018;217:285–90. https://doi.org/10.1016/j.matchemphys.2018.06.063.

    Article  CAS  Google Scholar 

  33. Mark JE, Allcock HR, West R. Inorganic polymers. 2nd ed. Oxford: Oxford University Press; 2005.

    Google Scholar 

  34. Vallejo-Montesinos J, Villegas A, Jacobo-Azuara A, Martínez JM, Ramírez-Oliva E, Romero-Izquierdo A, et al. Synthetic and natural silica-aluminates as inorganic acidic catalysts in ring opening polymerization of cyclosiloxanes. Appl Organomet Chem. 2012;26:362–8.

    Article  CAS  Google Scholar 

  35. Vallejo-Montesinos J, Villegas A, Cervantes J, Pérez E, Goicochea AG. Study of polymer-solvent interactions of complex polysiloxanes using dissipative particle dynamics. J Macromol Sci Part B. 2018;57:624–44. https://doi.org/10.1080/00222348.2018.1503336.

    Article  CAS  Google Scholar 

  36. Mark JE. Some interesting things about polysiloxanes. Acc Chem Res. 2004;37:946–53.

    Article  CAS  Google Scholar 

  37. Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stand. 1956;57:217.

    Article  CAS  Google Scholar 

  38. Blaine RL, Kissinger HE. Homer Kissinger and the Kissinger equation. Thermochim Acta. 2012;540:1–6.

    Article  CAS  Google Scholar 

  39. Vyazovkin S. Is the Kissinger equation applicable to the processes that occur on cooling? Macromol Rapid Commun. 2002;23:771–5.

    Article  CAS  Google Scholar 

  40. Friedman HL. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C Polym Symp. 2007;6:183–95. https://doi.org/10.1002/polc.5070060121.

    Article  Google Scholar 

  41. Ma W, Wang X, Zhang J. Crystallization kinetics of poly(vinylidene fluoride)/MMT, SiO2, CaCO3, or PTFE nanocomposite by differential scanning calorimeter. J Therm Anal Calorim. 2011;103:319–27.

    Article  CAS  Google Scholar 

  42. Gonzalez-Calderon JA, Castrejon-Gonzalez EO, Medellin-Rodriguez FJ, Stribeck N, Almendarez-Camarillo A. Functionalization of multi-walled carbon nanotubes (MWCNTs) with pimelic acid molecules: effect of linkage on β-crystal formation in an isotactic polypropylene (iPP) matrix. J Mater Sci. 2015;50:1457–68.

    Article  CAS  Google Scholar 

  43. Papageorgiou GZ, Panayiotou C. Crystallization and melting of biodegradable poly(propylene suberate). Thermochim Acta. 2011;523:187–90. https://doi.org/10.1016/j.tca.2011.05.023.

    Article  CAS  Google Scholar 

  44. Rong MZ, Zhang MQ, Pan SL, Lehmann B, Friedrich K. Analysis of the interfacial interactions in polypropylene/silica nanocomposites. Polym Int. 2004;53:176–83.

    Article  CAS  Google Scholar 

  45. Jeziorny A. Parameters characterizing the kinetic of the non- isothermal crystallization of poly(ethylene tetraphtalate) determined by DSC. Polymer (Guildf). 1978;19(10):1142.

    Article  CAS  Google Scholar 

  46. Fukuyama Y, Kawai T, Kuroda SI, Toyonaga M, Taniike T, Terano M. The effect of the addition of polypropylene grafted SiO2 nanoparticle on the crystallization behavior of isotactic polypropylene. J Therm Anal Calorim. 2013;113:1511–9.

    Article  CAS  Google Scholar 

  47. Gopakumar TG, Lee JA, Kontopoulou M, Parent JS. Influence of clay exfoliation on the physical properties of montmorillonite/polyethylene composites. Polymer (Guildf). 2002;43:5483–91.

    Article  CAS  Google Scholar 

  48. Li J, He W, Long L, Zhang K, Xiang Y, Zhang M, et al. A novel silica-based nucleating agent for polypropylene: preparation, characterization, and application. J Vinyl Addit Technol. 2018;24:58–67. https://doi.org/10.1002/vnl.21525.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank PRODEP for giving a scholarship to Dr. José Amir González Calderón that allowed to do this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Vallejo-Montesinos.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzalez-Calderon, J.A., Pérez-Pérez, C., Pérez Rodríguez, R.Y. et al. Silanization of di-n-octyldichlorosilane as a route to improve the integration of titanium dioxide in polypropylene. J Therm Anal Calorim 138, 1069–1079 (2019). https://doi.org/10.1007/s10973-019-08159-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08159-y

Keywords

Navigation