Skip to main content
Log in

Entropy generation analysis on electroosmotic flow in non-Darcy porous medium via peristaltic pumping

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

A Correction to this article was published on 16 September 2019

This article has been updated

Abstract

In current paper, it is aimed to investigate the entropy generation of electroosmotic flow aggravated by peristaltic pumping across a non-Darcy porous medium. We have implemented the Darcy Forchheimer model to interpret the permeability of porous media. The electro-magneto-hydrodynamic flow is considered in a symmetric channel. We have analyzed the flow characteristics, heat transfer and entropy generation for various values of joule heating parameter \(\gamma\), Hartmann number \(H_{\text{m}}\), Darcy number \(\Omega^{2}\), Forchheimer number \(c_{\text{F}}\) and electroosmotic parameter m. It is found that entropy generation increases for increasing values of Darcy number \(\Omega^{2}\) and Forchheimer number \(c_{\text{F}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 16 September 2019

    The authors recently attempted.

References

  1. Bejan A. Entropy generation minimization. 2nd ed. Boca Raton: CRC; 1996.

    Google Scholar 

  2. Sciacovelli A, Verda V, Sciubba E. Entropy generation analysis as a design tool—a review. Renew Sustain Energy Rev. 2015;43:1167–81.

    Article  Google Scholar 

  3. Zhao L, Liu LH. Entropy generation analysis of electro-osmotic flow in open-end and closed-end micro-channels. Ain Shams Eng J. 2017;8:623–32.

    Article  Google Scholar 

  4. Rashidi MM, Abelman S, Mehr NF. Entropy generation in steady MHD flow due to a rotating porous disk in a nanofluid. Int J Heat Mass Transf. 2013;62:515–25.

    Article  CAS  Google Scholar 

  5. Afridi MI, Qasim M, Khan I, Tlili I. Entropy generation in MHD mixed convection stagnation-point flow in the presence of joule and frictional heating. Case Stud Therm Eng. 2018;12:292–300.

    Article  Google Scholar 

  6. Gul A, Khan I, Makhanov SS. Entropy generation in a mixed convection Poiseulle flow of molybdenum disulphide Jeffrey nanofluid. Results Phys. 2018;9:947–54.

    Article  Google Scholar 

  7. Saqib M, Ali F, Khan I, Sheikh NA, Khan A. Entropy generation in different types of fractionalized nanofluids. Arab J Sci Eng. 2018:44(1):1–10.

    Google Scholar 

  8. Adesanya SO, Falade JA. Thermodynamics analysis of hydromagnetic third grade fluid flow through a channel filled with porous medium. Alex Eng J. 2015;54(3):615–22.

    Article  Google Scholar 

  9. Afridi MI, Qasim M, Shafie S, Makinde OD. Entropy generation analysis of spherical and non-spherical ag-water nanofluids in a porous medium with magnetic and porous dissipation. J Nanofluids. 2018;7(5):951–60.

    Article  Google Scholar 

  10. Abbas MA, Bai Y, Rashidi MM, Bhatti MM. Analysis of entropy generation in the flow of peristaltic nanofluids in channels with compliant walls. Entropy. 2016;18(3):90.

    Article  CAS  Google Scholar 

  11. Rashidi MM, Bhatti MM, Abbas MA, Ali ME. Entropy generation on MHD blood flow of nanofluid due to peristaltic waves. Entropy. 2016;18(4):117.

    Article  CAS  Google Scholar 

  12. Qasim M, Hayat Khan Z, Khan I, Al-Mdallal QM. Analysis of entropy generation in flow of methanol-based nanofluid in a sinusoidal wavy channel. Entropy. 2017;19(10):490.

    Article  CAS  Google Scholar 

  13. Alizadeh R, Karimi N, Arjmandzadeh R, et al. Mixed convection and thermodynamic irreversibilities in MHD nanofluid stagnation-point flows over a cylinder embedded in porous media. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7071-8.

    Article  Google Scholar 

  14. Shamsabadi H, Rashidi S, Esfahani JA. Entropy generation analysis for nanofluid flow inside a duct equipped with porous baffles. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7350-4.

    Article  Google Scholar 

  15. Cameselle C, Reddy KR. Development and enhancement of electro-osmotic flow for the removal of contaminants from soils. Electrochim Acta. 2012;86:10–22.

    Article  CAS  Google Scholar 

  16. Zhou J, Tao YL, Xu CJ, Gong XN, Hu PC. Electro-osmotic strengthening of silts based on selected electrode materials. Soils Found. 2015;55(5):1171–80.

    Article  Google Scholar 

  17. Tripathi D, Bhushan S, Bég OA. Transverse magnetic field driven modification in unsteady peristaltic transport with electrical double layer effects. Colloids Surf A. 2016;506:32–9.

    Article  CAS  Google Scholar 

  18. Bouriat P, Saulnier P, Brochette P, Graciaa A, Lachaise J. A convenient apparatus to determine the zeta potential of grains by electro-osmosis. J Colloid Interface Sci. 1999;209(2):445–8.

    Article  CAS  PubMed  Google Scholar 

  19. Li B, Zhou WN, Yan YY, Tian C. Evaluation of electro-osmotic pumping effect on microporous media flow. Appl Therm Eng. 2013;60(1–2):449–55.

    Article  Google Scholar 

  20. Latham TW. Fluid motion in a peristaltic pump. Cambridge: MIT; 1966.

    Google Scholar 

  21. Noreen S. Peristaltically assisted nanofluid transport in an asymmetric channel. Karbala Int J Mod Sci. 2018;4(1):35–49.

    Article  Google Scholar 

  22. Noreen S, Rashidi MM, Qasim M. Blood flow analysis with considering nanofluid effects in vertical channel. Appl Nanosci. 2017;7(5):193–9.

    Article  CAS  Google Scholar 

  23. Noreen S. Effects of joule heating and convective boundary conditions on magnetohydrodynamic peristaltic flow of couple-stress fluid. J Heat Transf. 2016;138(9):094502.

    Article  Google Scholar 

  24. Misra JC, Pandey SK. Peristaltic transport of blood in small vessels: study of a mathematical model. Comput Math Appl. 2002;43(8–9):1183–93.

    Article  Google Scholar 

  25. Mishra M, Rao AR. Peristaltic transport of a Newtonian fluid in an asymmetric channel. Z angew Math Phys ZAMP. 2003;54(3):532–50.

    Article  Google Scholar 

  26. Qasim M, Noreen S. Heat transfer in the boundary layer flow of a Casson fluid over a permeable shrinking sheet with viscous dissipation. Eur Phys J Plus. 2014;129(1):7.

    Article  Google Scholar 

  27. Vajravelu K, Radhakrishnamacharya G, Radhakrishnamurty V. Peristaltic flow and heat transfer in a vertical porous annulus, with long wave approximation. Int J Non-Linear Mech. 2007;42(5):754–9.

    Article  Google Scholar 

  28. Srinivas S, Kothandapani M. The influence of heat and mass transfer on MHD peristaltic flow through a porous space with compliant walls. Appl Math Comput. 2009;213(1):197–208.

    Google Scholar 

  29. Tripathi D. Peristaltic transport of a viscoelastic fluid in a channel. Acta Astronaut. 2011;68(7–8):1379–85.

    Article  Google Scholar 

  30. Starov VM, Zhdanov VG. Effective viscosity and permeability of porous media. Colloids Surf A. 2001;192(1–3):363–75.

    Article  CAS  Google Scholar 

  31. Reddy MG. Heat and mass transfer on magnetohydrodynamic peristaltic flow in a porous medium with partial slip. Alex Eng J. 2016;55(2):1225–34.

    Article  Google Scholar 

  32. Elshehawey EF, Eldabe NT, Elghazy EM, Ebaid A. Peristaltic transport in an asymmetric channel through a porous medium. Appl Math Comput. 2006;182(1):140–50.

    Google Scholar 

  33. Noreen S. Magneto-thermo hydrodynamic peristaltic flow of Eyring–Powell nanofluid in asymmetric channel. Nonlinear Eng. 2018;7(2):83–90.

    Article  Google Scholar 

  34. Khalid A, Khan I, Khan A, Shafie S, Tlili I. Case study of MHD blood flow in a porous medium with CNTS and thermal analysis. Case Stud Therm Eng. 2018;12:374–80.

    Article  Google Scholar 

  35. Khan I, Abro KA, Mirbhar MN, Tlili I. Thermal analysis in Stokes’ second problem of nanofluid: applications in thermal engineering. Case Stud Therm Eng. 2018;12:271–5.

    Article  Google Scholar 

  36. Kouloulias K, Sergis A, Hardalupas YJ. Assessing the flow characteristics of nanofluids during turbulent natural convection. Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7631-y.

    Article  Google Scholar 

  37. Forcheimer P. Wasserbewewegung durch Boden. Z Ver Deutsch Ing. 1901;45:1782–8.

    Google Scholar 

  38. Begum AS, Nithyadevi N, Öztop HF, Al-Salem K. Numerical simulation of MHD mixed convection in a nanofluid filled non-darcy porous enclosure. Int J Mech Sci. 2017;1(130):154–66.

    Article  Google Scholar 

  39. Wu YS. Non Darcy displacements of immiscible fluids in porous media. Water Resour Res 2001;37:2943–50.

    Article  Google Scholar 

  40. Veyskarami M, Hassani AH, Ghazanfari MH. Modeling of non-Darcy flow through anisotropic porous media: role of pore space profiles. Chem Eng Sci. 2016;151:93–104.

    Article  CAS  Google Scholar 

  41. Gupta A, Coelho D, Adler PM. Universal electro-osmosis formulae for porous media. J Colloid Interface Sci. 2008;319(2):549–54.

    Article  CAS  PubMed  Google Scholar 

  42. Tripathi D. Study of transient peristaltic heat flow through a finite porous channel. Math Comput Model. 2013;57(5–6):1270–83.

    Article  Google Scholar 

  43. Tripathia D, Bhushan S, Bég OA. Unsteady viscous flow driven by the combined effects of peristalsis and electro-osmosis. Alex Eng J 2018;57(3):1349–59.

    Article  Google Scholar 

  44. Goswami P, Chakraborty S. Semi-analytical solutions for electrosomotic flows with interfacial slip in microchannels of complex crosssectional shapes. Microfluid Nanofluid. 2011;11:255–67.

    Article  CAS  Google Scholar 

  45. Tripathi D, Bhushan S, Beg OA. Transverse magnetic field driven modification in unsteady peristaltic transport with electrical double layer effects. Colloids Surf A Physicochem Eng Asp. 2016;506:32–9.

    Article  CAS  Google Scholar 

  46. Nield DA. Modelling fluid flow and heat transfer in a saturated porous medium. Adv Decis Sci. 2000;4(2):165–73.

    Google Scholar 

  47. Jaffrin MY, Shapiro AH. Peristaltic pumping. Annu Rev Fluid Mech. 1971;3:13–37.

    Article  Google Scholar 

  48. Shapiro AH, Jaffrin MY, Weinberg SL. Peristaltic pumping with long wavelengths and low Reynolds number. J Fluid Mech. 1969;37:799–825.

    Article  Google Scholar 

  49. Kikuchi Y. Effect of Leukocytes and platelets on blood flow through a parallel array of microchannels: micro-and Macroflow relation and rheological measures of leukocytes and platelate acivities. Microvasc Res. 1995;50:288–300.

    Article  CAS  PubMed  Google Scholar 

  50. Akbar NS. Entropy generation and energy conversion rate for the peristaltic flow in a tube with magnetic field. Energy. 2015;82:23–30.

    Article  Google Scholar 

  51. Adesanya SO, Falade JA. Thermodynamics analysis of hydromagnetic third grade fluid flow through a channel filled with porous medium. Alex Eng J. 2015;54:615–22.

    Article  Google Scholar 

  52. Akbar NS, Raza M, Ellahi R. Peristaltic flow with thermal conductivity of H2O + Cu nanofluid and entropy generation. Results Phys. 2015;5:115–24.

    Article  Google Scholar 

  53. Abbas MA, Yanqin B, Rashidi MM, Bhatti MM. Analysis of entropy generation in the flow of peristaltic nanofluids in channels with compliant walls. Entropy. 2016;18:90.

    Article  CAS  Google Scholar 

  54. Rashidi MM, Bhatti MM, Abbas MA, Ali MES. Entropy generation on MHD blood flow of nanofluid due to peristaltic waves. Entropy. 2016;16:117.

    Article  CAS  Google Scholar 

  55. Maraj EN, Nadeem S. Theoretical analysis of entropy generation in peristaltic transport of nanofluid in an asymmetric channel. Int J Exergy. 2016;20:294–317.

    Article  CAS  Google Scholar 

  56. Munawar S, Saleem N, Aboura K. Second law analysis in the peristaltic flow of variable viscosity fluid. Int J Exergy. 2016;20:170–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Noreen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noreen, S., Qurat Ul Ain Entropy generation analysis on electroosmotic flow in non-Darcy porous medium via peristaltic pumping. J Therm Anal Calorim 137, 1991–2006 (2019). https://doi.org/10.1007/s10973-019-08111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-019-08111-0

Keywords

Navigation