Skip to main content
Log in

Synthesis and thermo-physical properties of water-based novel Ag/ZnO hybrid nanofluids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The comparative study on the thermo-physical properties of water-based ZnO nanofluids and Ag/ZnO hybrid nanofluids is reported in the present study. The outer surface of ZnO nanoparticles was modified with a thin coating of Ag nanoparticles by a wet chemical method for improved stability and heat transfer properties. The ZnO and Ag/ZnO nanofluids were prepared with varying volume concentration (ϕ = 0.02–0.1%). The synthesized nanoparticles and nanofluids were characterized with different characterization methods viz., scanning electron microscopy, X-ray diffraction, dynamic light scattering, thermal conductivity measurement, and viscosity measurement. Results show that thermal conductivity of Ag/ZnO hybrid nanofluids is found to be significantly higher compared to ZnO nanofluids. The maximum thermal conductivity an enhancement for Ag/ZnO nanofluid (ϕ = 0.1%) is found to 20% and 28% when it compared with ZnO nanofluid (ϕ = 0.1%) and water, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

µ :

Viscosity (Pa s)

ϕ :

Volume concentration (%)

m :

Mass (kg)

ρ :

Density (kg m−3)

k :

Thermal conductivity (W m−1 K−1)

\(D_{\text{c}}\) :

Diffusion coefficient

\(K_{\text{B }}\) :

Boltzmann constant

T :

Absolute temperature

r :

Radius of the particles

b:

Base fluid (deionized water)

n:

Nanoparticles

nf:

Nanofluid

EG:

Ethylene glycol

TC:

Thermal conductivity

Ag/ZnO:

Silver-coated zinc oxide nanoparticles

References

  1. Modak M, Srinivasan S, Garg K, Chougule SS, Agarwal MK, Sahu SK. Experimental investigation of heat transfer characteristics of the hot surface using Al2O3–water nanofluids. Chem Eng Process Process Intensif. 2015;91:104–13. https://doi.org/10.1016/j.cep.2015.03.006.

    Article  CAS  Google Scholar 

  2. Modak M, Chougule SS, Sahu SK. An experimental investigation on heat transfer characteristics of hot surface by using CuO–water nanofluids in circular jet impingement cooling. J Heat Transf. 2017;140:012401. https://doi.org/10.1115/1.4037396.

    Article  CAS  Google Scholar 

  3. Chougule SS, Sahu SK. Heat transfer and friction characteristics of Al2O3/water and CNT/water nanofluids in transition flow using helical screw tape inserts—a comparative study. Chem Eng Process Process Intensif. 2015;88:78–88.

    Article  CAS  Google Scholar 

  4. Putra N, Yanuar IFN. Application of nanofluids to a heat pipe liquid-block and the thermoelectric cooling of electronic equipment. Exp Therm Fluid Sci. 2011;35:1274–81. https://doi.org/10.1016/j.expthermflusci.2011.04.015.

    Article  CAS  Google Scholar 

  5. Choi SUS, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. ASME Int Mech Eng Congr Expos. 1995;66:99–105. https://doi.org/10.1115/1.1532008.

    Article  CAS  Google Scholar 

  6. Chandrasekar M, Suresh S, Bose AC. Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. Exp Therm Fluid Sci. 2010;34:210–6. https://doi.org/10.1016/j.expthermflusci.2009.10.022.

    Article  CAS  Google Scholar 

  7. Saeedinia M, Akhavan-Behabadi MA, Razi P. Thermal and rheological characteristics of CuO–Base oil nanofluid flow inside a circular tube. Int Commun Heat Mass Transf. 2012;39:152–9.

    Article  CAS  Google Scholar 

  8. Raykar VS, Singh AK. Thermal and rheological behavior of acetylacetone stabilized ZnO nanofluids. Thermochim Acta. 2010;502:60–5. https://doi.org/10.1016/j.tca.2010.02.007.

    Article  CAS  Google Scholar 

  9. Saleh R, Putra N, Wibowo RE, Septiadi WN, Prakoso SP. Titanium dioxide nanofluids for heat transfer applications. Exp Therm Fluid Sci. 2014;52:19–29. https://doi.org/10.1016/j.expthermflusci.2013.08.018.

    Article  CAS  Google Scholar 

  10. Kulkarni DP, Namburu PK, Ed Bargar H, Das DK. Convective heat transfer and fluid dynamic characteristics of SiO2—ethylene glycol/water nanofluid. Heat Transf Eng. 2008;29:1027–35.

    Article  CAS  Google Scholar 

  11. Parametthanuwat T, Bhuwakietkumjohn N, Rittidech S, Ding Y. Experimental investigation on thermal properties of silver nanofluids. Int J Heat Fluid Flow. 2015;56:80–90. https://doi.org/10.1016/j.ijheatfluidflow.2015.07.005.

    Article  CAS  Google Scholar 

  12. Riehl RR, Dos SN. Water-copper nanofluid application in an open loop pulsating heat pipe. Appl Therm Eng. 2012;42:6–10. https://doi.org/10.1016/j.applthermaleng.2011.01.017.

    Article  CAS  Google Scholar 

  13. Chougule SS, Sahu SK. Thermal performance of automobile radiator using carbon nanotube-water nanofluid-experimental study. J Therm Sci Eng Appl. 2014;6:041009. https://doi.org/10.1115/1.4027678.

    Article  CAS  Google Scholar 

  14. Meriläinen A, Seppälä A, Saari K, Seitsonen J, Ruokolainen J, Puisto S, et al. Influence of particle size and shape on turbulent heat transfer characteristics and pressure losses in water-based nanofluids. Int J Heat Mass Transf. 2013;61:439–48.

    Article  Google Scholar 

  15. Ranga Babu JA, Kumar KK, Srinivasa RS. State-of-art review on hybrid nanofluids. Renew Sustain Energy Rev. 2017;77:551–65.

    Article  CAS  Google Scholar 

  16. Yarmand H, Gharehkhani S, Ahmadi G, Shirazi SFS, Baradaran S, Montazer E, et al. Graphene nanoplatelets-silver hybrid nanofluids for enhanced heat transfer. Energy Convers Manag. 2015;100:419–28. https://doi.org/10.1016/j.enconman.2015.05.023.

    Article  CAS  Google Scholar 

  17. Baby TT, Sundara R. Synthesis and transport properties of metal oxide decorated graphene dispersed nanofluids. J Phys Chem C. 2011;115:8527–33. https://doi.org/10.1021/jp200273g.

    Article  CAS  Google Scholar 

  18. Munkhbayar B, Tanshen MR, Jeoun J, Chung H, Jeong H. Surfactant-free dispersion of silver nanoparticles into MWCNT-aqueous nanofluids prepared by one-step technique and their thermal characteristics. Ceram Int. 2013;39:6415–25. https://doi.org/10.1016/j.ceramint.2013.01.069.

    Article  CAS  Google Scholar 

  19. Tadjarodi A, Zabihi F. Thermal conductivity studies of novel nanofluids based on metallic silver decorated mesoporous silica nanoparticles. Mater Res Bull. 2013;48:4150–6. https://doi.org/10.1016/j.materresbull.2013.06.043.

    Article  CAS  Google Scholar 

  20. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M. Synthesis of Al2O3–Cu/water hybrid nanofluids using two-step method and its thermophysical properties. Colloids Surf A Physicochem Eng Asp. 2011;388:41–8. https://doi.org/10.1016/j.colsurfa.2011.08.005.

    Article  CAS  Google Scholar 

  21. Esfe MH, Yan W, Akbari M, Karimipour A, Hassani M. Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids. Int Commun Heat Mass Transf. 2015. https://doi.org/10.1016/j.icheatmasstransfer.2015.09.001.

    Article  Google Scholar 

  22. Madhesh D, Parameshwaran R, Kalaiselvam S. Experimental investigation on convective heat transfer and rheological characteristics of Cu–TiO2 hybrid nanofluids. Exp Therm Fluid Sci. 2014;52:104–15. https://doi.org/10.1016/j.expthermflusci.2013.08.026.

    Article  CAS  Google Scholar 

  23. Yarmand H, Gharehkhani S, Shirazi SFS, Goodarzi M, Amiri A, Sarsam WS, et al. Study of synthesis, stability and thermo-physical properties of graphene nanoplatelet/platinum hybrid nanofluid. Int Commun Heat Mass Transf. 2016;77:15–21. https://doi.org/10.1016/j.icheatmasstransfer.2016.07.010.

    Article  CAS  Google Scholar 

  24. Yarmand H, Gharehkhani S, Shirazi SFS, Amiri A, Montazer E, Arzani HK, et al. Nanofluid based on activated hybrid of biomass carbon/graphene oxide: Synthesis, thermo-physical and electrical properties. Int Commun Heat Mass Transf. 2016;72:10–5. https://doi.org/10.1016/j.icheatmasstransfer.2016.01.004.

    Article  CAS  Google Scholar 

  25. Sundar LS, Singh MK, Sousa ACM. Enhanced heat transfer and friction factor of MWCNT–Fe3O4/water hybrid nanofluids. Int Commun Heat Mass Transf. 2014;52:73–83. https://doi.org/10.1016/j.icheatmasstransfer.2014.01.012.

    Article  CAS  Google Scholar 

  26. Hemmat Esfe M, Abbasian Arani AA, Rezaie M, Yan WM, Karimipour A. Experimental determination of thermal conductivity and dynamic viscosity of Ag-MgO/water hybrid nanofluid. Int Commun Heat Mass Transf. 2015;66:189–95. https://doi.org/10.1016/j.icheatmasstransfer.2015.06.003.

    Article  CAS  Google Scholar 

  27. Goodarzi M, Toghraie D, Reiszadeh M, Afrand M. Experimental evaluation of dynamic viscosity of ZnO–MWCNTs/engine oil hybrid nanolubricant based on changes in temperature and concentration. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-018-7707-8.

    Article  Google Scholar 

  28. Toghraie D, Chaharsoghi VA, Afrand M. Measurement of thermal conductivity of ZnO–TiO2/EG hybrid nanofluid. J Therm Anal Calorim. 2016;125:527–35. https://doi.org/10.1007/s10973-016-5436-4.

    Article  CAS  Google Scholar 

  29. Zadkhast M, Toghraie D, Karimipour A. Developing a new correlation to estimate the thermal conductivity of MWCNT–CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim. 2017;129:859–67.

    Article  CAS  Google Scholar 

  30. Esfe MH, Behbahani PM, Akbar A, Arani A, Sarlak MR. Thermal conductivity enhancement of SiO2–MWCNT (85:15%)—EG hybrid nanofluids. J Therm Anal Calorim. 2017;128:249–58.

    Article  Google Scholar 

  31. Esfe MH, Amiri MK, Alirezaie A. Thermal conductivity of a hybrid nanofluid A new economic strategy and model. J Therm Anal Calorim. 2018. https://doi.org/10.1007/s10973-017-6836-9.

    Article  Google Scholar 

  32. Devendiran DK, Amirtham VA. A review on preparation, characterization, properties and applications of nanofluids. Renew Sustain Energy Rev. 2016;60:21–40. https://doi.org/10.1016/j.rser.2016.01.055.

    Article  CAS  Google Scholar 

  33. Chougule SS, Sahu SK. Enhancement of heat transfer with nanofluids. IIT Indore; 2015. http://hdl.handle.net/123456789/51. Accessed 24 June 2018.

  34. Freitas C, Müller RH. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLN®) dispersions. Int J Pharm. 1998;168:221–9.

    Article  CAS  Google Scholar 

  35. Keblinski P, Phillpot SR, Choi SUS, Eastman JA. Mechanisms of heat flow in suspensions of nanosized particles (nanofluids). Int J Heat Mass Transf. 2002;45:855–63.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandesh S. Chougule.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barewar, S.D., Chougule, S.S., Jadhav, J. et al. Synthesis and thermo-physical properties of water-based novel Ag/ZnO hybrid nanofluids. J Therm Anal Calorim 134, 1493–1504 (2018). https://doi.org/10.1007/s10973-018-7883-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7883-6

Keywords

Navigation