Skip to main content
Log in

Microencapsulated oleic–capric acid/hexadecane mixture as phase change material for thermal energy storage

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal energy storage systems provide efficiency in order to have better utilization of energy sources while protecting the environment. Thermal energy storage can be classified as sensible and latent heat storage. The storage of latent heat allows a greater density of energy storage with a narrow temperature range during phase change. Phase change materials (PCMs) are important novel materials, which are used as the storage of thermal energy as latent heat, and can provide utilization of waste heat energy. In this study, the capric acid and oleic acid mixture containing hexadecane were encapsulated as the core with styrene–divinylbenzene copolymer shell by emulsion polymerization technique. Thermal properties of fatty acid microcapsules were characterized by differential scanning calorimetry and thermogravimetric analysis and also their morphology and structure were examined by scanning electron microscopy, polarized optical microscopy and Fourier transform infrared spectroscopy (FT-IR), respectively. The heat storage property of microencapsulated PCM was tested in a horizontal air flow channel system equipped with a flat heating plate, air fan and air flow sensors. The microencapsulated PCM was prepared successfully, and results of the analysis presented that this material is promising candidate for potential heating and cooling system applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S. A review on phase change energy storage: materials and applications. Energy Convers Manag. 2004;45:1597–615.

    Article  CAS  Google Scholar 

  2. Rozanna D, Chuah TG, Salmiah A, Choong TSY, Sa’ari M. Fatty acids as phase change materials (PCMs) for thermal energy storage: a review. Int J Green Energy. 2004;1:495–513.

    Article  CAS  Google Scholar 

  3. Baetens R, Jelle BP, Gustavsen A. Phase change materials for building applications: a state-of-the-art review. Energy Build. 2010;42:1361–8.

    Article  Google Scholar 

  4. Su W, Darkwa J, Kokogiannakis G. Review of solid–liquid phase change materials and their encapsulation technologies. Renew Sustain Energy Rev. 2015;48:373–91.

    Article  CAS  Google Scholar 

  5. Sarı A, Alkan C, Karaipekli A. Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid–liquid microPCM for thermal energy storage. Appl Energy. 2010;87(5):1529–34.

    Article  CAS  Google Scholar 

  6. Alay S, Alkan C, Göde F. Synthesis and characterization of poly(methyl methacrylate)/n-hexadecane microcapsules using different cross-linkers and their application to some fabrics. Thermochim Acta. 2011;518(1–2):1–8.

    Article  CAS  Google Scholar 

  7. Tumirah K, Hussein MZ, Zulkarnain Z, Rafeadah R. Nano-encapsulated organic phase change material based on copolymer nanocomposites for thermal energy storage. Energy. 2014;66:881–90.

    Article  CAS  Google Scholar 

  8. Jiang X, Luo R, Peng F, Fang Y, Akiyama T, Wang S. Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3. Appl Energy. 2015;137:731–7.

    Article  CAS  Google Scholar 

  9. Li M, Wu Z. Thermal properties of the graphite/n-docosane composite PCM. J Therm Anal Calorim. 2013;111:77–83.

    Article  CAS  Google Scholar 

  10. Xia Y, Cui W, Zhang H, Zou Y, Xiang C, Chu H, Qiu S, Xu F, Sun L. Preparation and thermal performance of n-octadecane/expanded graphite composite phase-change materials for thermal management. J Therm Anal Calorim. 2018;131:81–8.

    Article  CAS  Google Scholar 

  11. Genc M, Karagoz-Genc Z. Microencapsulated myristic acid–fly ash with TiO2 shell as a novel phase change material for building application. J Therm Anal Calorim. 2018;131:2373–80.

    Article  CAS  Google Scholar 

  12. Meng X, Zhang H, Sun L, Xu F, Jiao Q, Zhao Z, Zhang J, Zhou H, Sawada Y, Liu Y. Preparation and thermal properties of fatty acids/CNTs composite as shape-stabilized phase change materials. J Therm Anal Calorim. 2013;111:377–84.

    Article  CAS  Google Scholar 

  13. Alkan C, Sarı A. Fatty acid/poly(methyl methacrylate) (PMMA) blends as form stable phase change materials for latent heat thermal energy storage. Sol Energy. 2008;82:118–24.

    Article  CAS  Google Scholar 

  14. Sarı A, Alkan C, Karaipekli A, Önal A. Preparation, characterization and thermal properties of styrene maleic anhydride copolymer (SMA)/fatty acid composites as form stable phase change materials. Energy Convers Manag. 2008;49(2):373–80.

    Article  CAS  Google Scholar 

  15. Bellemare JV. Thermally reflective encapsulated phase change pigment, United States Patent office. 2007; No. 0031652 A1.

  16. Zhang X, Chao N, Zhang X, Xu J. Natural microtubule encapsulated phase- change materials and preparation thereof, United States Patent office. 2010; No. 0071882A1.

  17. Hart RL, Work DE Flame resistant microencapsulated phase change materials, United States Patent office. 1995; No. 5, 435,376.

  18. Hatfield JC. Encapsulation of phase change materials, United States Patent office. 1987; No. 4, 708,812.

  19. Yuan Y, Zhang N, Tao W, Cao X, He Y. Fatty acids as phase change materials: a review. Renew Sustain Energy Rev. 2014;29:482–98.

    Article  CAS  Google Scholar 

  20. Ke H. Phase diagrams, eutectic mass ratios and thermal energy storage properties of multiple fatty acid eutectics as novel solid–liquid phase change materials for storage and retrieval of thermal energy. Appl Therm Eng. 2017;113:1319–31.

    Article  CAS  Google Scholar 

  21. Sharma A, Shukla A, Chen CR, Wu TN. Development of phase change materials (PCMs) for low temperature energy storage applications. Sustain Energy Technol Assess. 2014;7:17–21.

    Google Scholar 

  22. Karaipekli A, Sarı A. Capric–myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage. Renew Energy. 2008;33:2599–605.

    Article  CAS  Google Scholar 

  23. Karaipekli A, Sarı A. Preparation, thermal properties and thermal reliability of eutectic mixtures of fatty acids/expanded vermiculite as novel form-stable composites for energy storage. J Ind Eng Chem. 2010;16:767–73.

    Article  CAS  Google Scholar 

  24. Sarı A, Sarı H, Önal A. Thermal properties and thermal reliability of eutectic mixtures of some fatty acids as latent heat storage materials. Energy Convers Manag. 2004;45:365–76.

    Article  CAS  Google Scholar 

  25. Sarı A. Eutectic mixtures of some fatty acids for low temperature solar heating applications: thermal properties and thermal reliability. Appl Therm Eng. 2005;25:2100–7.

    Article  CAS  Google Scholar 

  26. Sari A. Eutectic mixtures of some fatty acids for latent heat storage: thermal properties and thermal reliability with respect to thermal cycling. Energy Convers Manag. 2006;47:1207–21.

    Article  CAS  Google Scholar 

  27. Yang X, Yuan Y, Zhang N, Cao X, Liu C. Preparation and properties of myristic–palmitic–stearic acid/expanded graphite composites as phase change materials for energy storage. Sol Energy. 2014;99:259–66.

    Article  CAS  Google Scholar 

  28. Inoue T, Hisatsugu Y, Ishikawa R, Suzuki M. Solid-liquid phase behavior of binary fatty acid mixtures 2. Mixtures of oleic acid with lauric acid, myristic acid, and palmitic acid. Chem Phys Lipids. 2004;127:161–73.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang H, Gao X, Chen C, Xu T, Fang Y, Zhang Z. A capric–palmitic–stearic acid ternary eutectic mixture/expanded graphite composite phase change material for thermal energy storage. Compos Part A Appl S. 2016;87:138–45.

    Article  CAS  Google Scholar 

  30. Liu C, Yuan Y, Zhang N, Cao X, Yang X. A novel PCM of lauric–myristic–stearic acid/expanded graphite composite for thermal energy storage. Mater Lett. 2014;120:43–6.

    Article  CAS  Google Scholar 

  31. Zhang N, Yuan Y, Wang X, Cao X, Yang X, Hu S. Preparation and characterization of lauric–myristic–palmitic acid ternary eutectic mixtures/expanded graphite composite phase change material for thermal energy storage. Chem Eng J. 2013;231:214–9.

    Article  CAS  Google Scholar 

  32. Schork FJ, Luo Y, Smulders W, Russum JP, Butté A, Fontenot K. Miniemulsion polymerization. In: Okubo M, editor. Polymer particles. Advances in polymer science, vol. 175. Berlin: Springer; 2005. p. 129–255.

    Chapter  Google Scholar 

  33. Azad ARM, Ugelstad J, Fitch RM, Hansen FK. Emulsification and emulsion polymerization of styrene using mixtures of cationic surfactant and long chain fatty alcohols or alkanes as emulsifiers. ACS Symp Ser. 1976;24(1):1–23.

    CAS  Google Scholar 

  34. Sari A, Alkan C, Döğüşcü DK, Kızıl Ç. Micro/nano encapsulated n-tetracosane and n-octadecane eutectic mixture with polystyrene shell for low-temperature latent heat thermal energy storage applications. Sol Energy. 2015;115:195–203.

    Article  CAS  Google Scholar 

  35. Meltzer V, Pincu E. Thermodynamic study of binary mixture of citric acid and tartaric acid. Cent Eur J Chem. 2012;10(5):1584–9.

    CAS  Google Scholar 

  36. Beyhan B, Paksoy H, Daşgan Y. Root zone temperature control with thermal energy storage in phase change materials for soilless greenhouse applications. Energy Convers Manag. 2013;74:446–53.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support of Research Fund of Yalova University (Project Number: 2017/YL/008) for the accomplishment of this work. Authors thank Dr. Ali Karaipekli (Çankırı Karatekin University, Turkey) for DSC analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Selçuk Mert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mert, M.S., Mert, H.H. & Sert, M. Microencapsulated oleic–capric acid/hexadecane mixture as phase change material for thermal energy storage. J Therm Anal Calorim 136, 1551–1561 (2019). https://doi.org/10.1007/s10973-018-7815-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7815-5

Keywords

Navigation