Skip to main content
Log in

Preparation of a novel mono-component intumescent flame retardant for enhancing the flame retardancy and smoke suppression properties of epoxy resin

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A novel mono-component intumescent flame retardant named pentaerythritol phosphate melamine salt (PPMS)-functionalized expandable graphite (PPMS-EG) was synthesized and carefully characterized by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance spectroscopy, scanning electron microscopy (SEM)–energy-dispersive X-ray spectrometry, and thermo-gravimetric (TG) analyses. Then, PPMS-EG was incorporated into epoxy resin (EP) to enhance fire safety. The flammability properties of EP composites were investigated by limiting oxygen index (LOI), UL94 vertical burning test, and cone calorimeter test. As expected, PPMS-EG imparts good flame retardancy to epoxy resin, and EP matrix with 20 mass% PPMS-EG passes the UL94 V-0 rating and the LOI value reaches 27.3%. Cone calorimeter test shows that the incorporation of PPMS-EG dramatically reduces the heat release and smoke production of EP, and the peak heat release rate and peak smoke production rate of EP composite with 15 mass% PPMS-EG are reduced by 68.7% and 46.3%, respectively, compared to those of EP. By comparison with either PPMS or expandable graphite, the same addition of PPMS-EG produces higher flame-retardant and smoke suppression efficiencies in EP matrix due to the formation of a more compact and intumescent char layer, as determined from digital photographs and SEM images. TG results show that PPMS-EG significantly enhances the thermal stability and char-forming ability of EP composites. Char residue analysis reveals that PPMS-EG positively contributes to the formation of more phosphorus-rich cross-linking char and aromatic char in the condensed phase, thus exhibiting a more thermally stable char against the release of heat and smoke. Overall, PPMS-EG can be used as a highly efficient mono-component intumescent flame retardant for preparing super flame-retarded EP composites.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Scheme 3

Similar content being viewed by others

References

  1. Sut A, Greiser S, Jäger C, Schartel B. Synergy in flame-retarded epoxy resin. J Therm Anal Calorim. 2017;128(1):141–53.

    Article  CAS  Google Scholar 

  2. Qiu S, Wang X, Yu B, Feng X, Mu X, Yuen RKK, Hu Y. Flame-retardant-wrapped polyphosphazene nanotubes: a novel strategy for enhancing the flame retardancy and smoke toxicity suppression of epoxy resins. J Hazard Mater. 2017;325:327–39.

    Article  CAS  Google Scholar 

  3. Wang X, Hu Y, Song L, Xing W, Lu H, Lv P, Jie G. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer. 2010;51:2435–45.

    Article  CAS  Google Scholar 

  4. Khalili P, Tshai KY, Hui D, Kong I. Synergistic of ammonium polyphosphate and alumina trihydrate as fire retardants for natural fiber reinforced epoxy composite. Compos Part B Eng. 2017;114:101–10.

    Article  CAS  Google Scholar 

  5. Jiao C, Zhang C, Dong J, Chen X, Qian Y, Li S. Combustion behavior and thermal pyrolysis kinetics of flame-retardant epoxy composites based on organic-inorganic intumescent flame retardant. J Therm Anal Calorim. 2015;119:1759–67.

    Article  CAS  Google Scholar 

  6. Bourbigot S, Le Bras M, Duquesne S, Rochery M. Recent advances for intumescent polymers. Macromol Mater Eng. 2004;289:499–511.

    Article  CAS  Google Scholar 

  7. Zhao X, Gao S, Liu G. A THEIC-based polyphosphate melamine intumescent flame retardant and its flame retardancy properties for polylactide. J Anal Appl Pyrol. 2016;122:24–34.

    Article  CAS  Google Scholar 

  8. Zhang F, Sun W, Wang Y, Liu B. Influence of the pentaerythritol phosphate melamine salt content on the combustion and thermal decomposition process of intumescent flame-retardant ethylene-vinyl acetate copolymer composites. J Appl Polym Sci. 2015;132:42148.

    Google Scholar 

  9. Makhlouf G, Hassan M, Nour M, Abdel-Monem YK, Abdelkhalik A. Evaluation of fire performance of linear low-density polyethylene containing novel intumescent flame retardant. J Therm Anal Calorim. 2017;130:1031–41.

    Article  CAS  Google Scholar 

  10. Zhang P, He Y, Tian S, Fan H, Chen Y, Yan J. Flame retardancy, mechanical, and thermal properties of waterborne polyurethane conjugated with a novel phosphorous-nitrogen intumescent flame retardant. Polym Compos. 2017;38:452–62.

    Article  CAS  Google Scholar 

  11. Tang M, Qi F, Chen M, Sun Z, Xu Y, Chen X, Zhang Z, Shen R. Synergistic effects of ammonium polyphosphate and red phosphorus with expandable graphite on flammability and thermal properties of HDPE/EVA blends. Polym Advan Technol. 2016;27:52–60.

    Article  CAS  Google Scholar 

  12. Alongi J, Han Z, Bourbigot S. Intumescence: tradition versus novelty. A comprehensive review. Prog Polym Sci. 2015;51:28–73.

    Article  CAS  Google Scholar 

  13. Wang X, Kalali EN, Wan J, Wang D. Carbon-family materials for flame retardant polymeric materials. Prog Polym Sci. 2017;69:22–46.

    Article  CAS  Google Scholar 

  14. Li Y, Zou J, Zhou S, Chen Y, Zou H, Liang M, Luo W. Effect of expandable graphite particle size on the flame retardant, mechanical, and thermal properties of water-blown semi-rigid polyurethane foam. J Appl Polym Sci. 2014;131(3):1082–90.

    Google Scholar 

  15. Luo W, Li Y, Zou H, Liang M. Study of different-sized sulfur-free expandable graphite on morphology and properties of water-blown semi-rigid polyurethane foams. RSC Adv. 2014;4:37302–10.

    Article  CAS  Google Scholar 

  16. Laachachi A, Burger N, Apaydin K, Sonnier R, Ferriol M. Is expanded graphite acting as flame retardant in epoxy resin? Polym Degrad Stabil. 2015;117:22–9.

    Article  CAS  Google Scholar 

  17. Yang S, Wang J, Huo S, Wang M, Wang J, Zhang B. Synergistic flame-retardant effect of expandable graphite and phosphorus-containing compounds for epoxy resin: strong bonding of different carbon residues. Polym Degrad Stabil. 2016;128:89–98.

    Article  CAS  Google Scholar 

  18. Wang N, Xu G, Wu Y, Zhang J, Hu L, Luan H, Fang Q. The influence of expandable graphite on double-layered microcapsules in intumescent flame-retardant natural rubber composites. J Therm Anal Calorim. 2016;123:1239–51.

    Article  CAS  Google Scholar 

  19. Xi W, Qian L, Huang Z, Cao Y, Li L. Continuous flame-retardant actions of two phosphate esters with expandable graphite in rigid polyurethane foams. Polym Degrad Stabil. 2016;130:97–102.

    Article  CAS  Google Scholar 

  20. Zheng Z, Liu Y, Zhang L, Wang H. Synergistic effect of expandable graphite and intumescent flame retardants on the flame retardancy and thermal stability of polypropylene. J Mater Sci. 2016;51:5857–71.

    Article  CAS  Google Scholar 

  21. Liu Y, He J, Yang R. Effects of Dimethyl Methylphosphonate, Aluminum hydroxide, ammonium polyphosphate, and expandable graphite on the flame retardancy and thermal properties of polyisocyanurate-polyurethane foams. Ind Eng Chem Res. 2015;54:5876–84.

    Article  CAS  Google Scholar 

  22. Zhu H, Zhu Q, Li J, Tao K, Xue L, Yan Q. Synergistic effect between expandable graphite and ammonium polyphosphate on flame retarded polylactide. Polym Degrad Stabil. 2011;96:183–9.

    Article  CAS  Google Scholar 

  23. Han J, Liang G, Gu A, Ye J, Zhang Z, Yuan L. A novel inorganic-organic hybridized intumescent flame retardant and its super flame retarding cyanate ester resins. J Mater Chem A. 2013;1:2169–82.

    Article  CAS  Google Scholar 

  24. Chen X, Zhuo J, Song W, Jiao C, Qian Y, Li S. Flame retardant effects of organic inorganic hybrid intumescent flame retardant based on expandable graphite in silicone rubber composites. Polym Adv Technol. 2014;25:1530–7.

    Article  CAS  Google Scholar 

  25. Liu D, Zhong X, Shi X, Qi Y, Zhu T, Shao M, Zhang F. Pentaerythritol phosphate melamine salt, a new aggregating reagent for oilfield chemical sand control: preparation, properties, and mechanism. Energy Fuel. 2016;30:2503–13.

    Article  CAS  Google Scholar 

  26. Fontaine G, Bourbigot S, Duquesne S. Neutralized flame retardant phosphorus agent: facile synthesis, reaction to fire in PP and synergy with zinc borate. Polym Degrad Stabil. 2008;93(1):68–76.

    Article  CAS  Google Scholar 

  27. Wang G, Yang J. Influences of expandable graphite modified by polyethylene glycol on fire protection of waterborne intumescent fire resistive coating. Surf Coat Technol. 2010;204:3599–605.

    Article  CAS  Google Scholar 

  28. Huang G, Chen S, Tang S, Gao J. A novel intumescent flame retardant-functionalized graphene: nanocomposite synthesis, characterization, and flammability properties. Mater Chem Phys. 2012;135:938–47.

    Article  CAS  Google Scholar 

  29. Wang P, Yang F, Cai Z. Synergistic effect of organo-montmorillonite and DOPO-based oligomer on improving the flame retardancy of epoxy thermoset. J Therm Anal Calorim. 2017;128:1429–41.

    Article  CAS  Google Scholar 

  30. Yan L, Xu Z, Wang X. Influence of nano-silica on the flame retardancy and smoke suppression properties of transparent intumescent fire-retardant coatings. Prog Org Coat. 2017;112:319–29.

    Article  CAS  Google Scholar 

  31. Ye L, Meng X, Ji X, Li Z, Tang J. Synthesis and characterization of expandable graphite-poly(methyl methacrylate) composite particles and their application to flame retardation of rigid polyurethane foams. Polym Degrad Stabil. 2009;94:971–9.

    Article  CAS  Google Scholar 

  32. Si M, Feng J, Hao J, Xu L, Du J. Synergistic flame retardant effects and mechanisms of nano-Sb2O3 in combination with aluminum phosphinate in poly(ethylene terephthalate). Polym Degrad Stabil. 2014;100:70–8.

    Article  CAS  Google Scholar 

  33. Xu Z, Yan L, Liu D, Ni T, Peng J, Xu Y. Correlations between measurements of flame-retarded high-density polyethylene composites subjected to three conventional fire tests. In: Harada K, Matsuyama K, Himoto K, Nakamura Y, Wakatsuki K, editors. Fire science and technology 2015. Singapore: Springer; 2017. p. 599–607.

    Chapter  Google Scholar 

  34. Yang A, Deng C, Chen H, Wei Y, Wang Y. A novel Schiff-base polyphosphate ester: highly-efficient flame retardant for polyurethane elastomer. Polym Degrad Stabil. 2017;144:70–82.

    Article  CAS  Google Scholar 

  35. Shi Y, Yu B, Zheng Y, Guo J, Chen B, Pan Z, Hu Y. A combination of POSS and polyphosphazene for reducing fire hazards of epoxy resin. Polym Adv Technol. 2018;29(4):1242–54.

    Article  CAS  Google Scholar 

  36. Li H, Hu Z, Zhang S, Gu X, Wang H, Jiang P, Zhao Q. Effects of titanium dioxide on the flammability and char formation of water-based coatings containing intumescent flame retardants. Prog Org Coat. 2015;78:318–24.

    Article  Google Scholar 

  37. Xu Z, Chu Z, Yan L. Enhancing the flame-retardant and smoke suppression properties of transparent intumescent fire-retardant coatings by introducing boric acid as synergistic agent. J Therm Anal Calorim. 2018;133:1241–1252.

    Article  CAS  Google Scholar 

  38. Murat Unlu S, Tayfun U, Yildirim B, Dogan M. Effect of boron compounds on fire protection properties of epoxy based intumescent coating. Fire Mater. 2017;41(1):17–28.

    Article  Google Scholar 

  39. Yan L, Xu Z, Wang X. Synergistic effects of organically modified montmorillonite on the flame-retardant and smoke suppression properties of transparent intumescent fire-retardant coatings. Prog Org Coat. 2018;122:107–18.

    Article  CAS  Google Scholar 

  40. Guan Y, Huang J, Yang J, Shao Z, Wang Y. An effective way to flame-retard biocomposite with ethanolamine modified ammonium polyphosphate and its flame retardant mechanisms. Ind Eng Chem Res. 2015;54:3524–31.

    Article  CAS  Google Scholar 

  41. Yuan B, Fan A, Yang M, Chen X, Hu Y, Bao C, Jiang S, Niu Y, Zhang Y, He S, Dai H. The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios. Polym Degrad Stabil. 2017;143:42–56.

    Article  CAS  Google Scholar 

  42. Wang P, Xia L, Jian R, Ai Y, Zheng X, Chen G, Wang J. Flame-retarding epoxy resin with an efficient P/N/S-containing flame retardant: preparation, thermal stability, and flame retardance. Polym Degrad Stabil. 2018;149:69–77.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51676210), the Hunan Provincial Natural Science Foundation of China (No. 2018JJ3668), the Postdoctoral Science Foundation of Central South University, and the Project funded by China Postdoctoral Science Foundation (No. 2017M612587).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Xu, Z., Wang, X. et al. Preparation of a novel mono-component intumescent flame retardant for enhancing the flame retardancy and smoke suppression properties of epoxy resin. J Therm Anal Calorim 134, 1505–1519 (2018). https://doi.org/10.1007/s10973-018-7810-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7810-x

Keywords

Navigation