Skip to main content
Log in

Effects of ordered structure on non-isothermal crystallization kinetics and subsequent melting behavior of β-nucleated isotactic polypropylene/graphene oxide composites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

In this paper, effects of ordered structure on non-isothermal crystallization kinetics and subsequent melting behavior of β-nucleated isotactic polypropylene/graphene oxide composites were investigated. Under all cooling rates, as fusion temperature Tf stepped into the range of 168–178 °C, the ordered structure survived in the melt, resulting in the increase in crystallization peak temperature Tp, the decrease in crystallization activation energy ΔE and the decrease in the half crystallization time t1/2. When endset temperature of cooling Tend = 50 °C, lower cooling rate encouraged the formation of more β-phase. Moreover, the influence of ordered structure on β-α recrystallization was studied by adjusting the Tend. When Tend = 105 °C, higher cooling rate encouraged the formation of more β-phase. The ordered structure was favorable for the improvement of the thermal stability of the β-phase during β-α recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kang J, Li J, Chen S, Zhu S, Li H, Cao Y, Yang F, Xiang M. Hydrogenated petroleum resin effect on the crystallization of isotactic polypropylene. J Appl Polym Sci. 2013;130:25–38.

    Article  CAS  Google Scholar 

  2. Wang S-W, Yang W, Bao R-Y, Wang B, Xie B-H, Yang M-B. The enhanced nucleating ability of carbon nanotube-supported β-nucleating agent in isotactic polypropylene. Colloid Polym Sci. 2010;288:681–8.

    Article  CAS  Google Scholar 

  3. Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385–8.

    Article  CAS  PubMed  Google Scholar 

  4. McKeown NB. Molecular nanoporous crystals: predictable porosity. Nat Mater. 2011;10:563–4.

    Article  CAS  PubMed  Google Scholar 

  5. Dutta S, Pati SK. Novel properties of graphene nanoribbons: a review. J Mater Chem. 2010;20:8207.

    Article  CAS  Google Scholar 

  6. Miller JR, Simon P. Materials science. Electrochemical capacitors for energy management. Science. 2008;321:651–2.

    Article  CAS  PubMed  Google Scholar 

  7. Cui Y, Kundalwal SI, Kumar S. Gas barrier performance of graphene/polymer nanocomposites. Carbon. 2016;98:313–33.

    Article  CAS  Google Scholar 

  8. Liang M, Zhi L. Graphene-based electrode materials for rechargeable lithium batteries. J Mater Chem. 2009;19:5871.

    Article  CAS  Google Scholar 

  9. Imran Jafri R, Rajalakshmi N, Ramaprabhu S. Nitrogen doped graphene nanoplatelets as catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell. J Mater Chem. 2010;20:7114.

    Article  CAS  Google Scholar 

  10. Keeley GP, O’Neill A, McEvoy N, Peltekis N, Coleman JN, Duesberg GS. Electrochemical ascorbic acid sensor based on DMF-exfoliated graphene. J Mater Chem. 2010;20:7864.

    Article  CAS  Google Scholar 

  11. Goyal V, Balandin AA. Thermal properties of the hybrid graphene-metal nano-micro-composites: applications in thermal interface materials. Appl Phys Lett. 2012;100:073113.

    Article  CAS  Google Scholar 

  12. Cai D, Song M. Recent advance in functionalized graphene/polymer nanocomposites. J Mater Chem. 2010;20:7906.

    Article  CAS  Google Scholar 

  13. Park O-K, Hwang J-Y, Goh M, Lee JH, Ku B-C, You N-H. Mechanically strong and multifunctional polyimide nanocomposites using amimophenyl functionalized graphene nanosheets. Macromolecules. 2013;46:3505–11.

    Article  CAS  Google Scholar 

  14. Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chem Soc Rev. 2010;39:228–40.

    Article  CAS  PubMed  Google Scholar 

  15. Potts JR, Lee SH, Alam TM, An J, Stoller MD, Piner RD, Ruoff RS. Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization. Carbon. 2011;49:2615–23.

    Article  CAS  Google Scholar 

  16. Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Func Mater. 2009;19:2297–302.

    Article  CAS  Google Scholar 

  17. Xu Z, Gao C. In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules. 2010;43:6716–23.

    Article  CAS  Google Scholar 

  18. Cao Y, Feng J, Wu P. Alkyl-functionalized graphene nanosheets with improved lipophilicity. Carbon. 2010;48:1683–5.

    Article  CAS  Google Scholar 

  19. Li W, Tang X-Z, Zhang H-B, Jiang Z-G, Yu Z-Z, Du X-S, Mai Y-W. Simultaneous surface functionalization and reduction of graphene oxide with octadecylamine for electrically conductive polystyrene composites. Carbon. 2011;49:4724–30.

    Article  CAS  Google Scholar 

  20. Yun YS, Bae YH, Kim DH, Lee JY, Chin I-J, Jin H-J. Reinforcing effects of adding alkylated graphene oxide to polypropylene. Carbon. 2011;49:3553–9.

    Article  CAS  Google Scholar 

  21. Lotz B, Wittmann JC, Lovinger AJ. Structure and morphology of poly(propylenes): a molecular analysis. Polymer. 1996;37:4979–92.

    Article  CAS  Google Scholar 

  22. Pawlak A, Piorkowska E. Crystallization of isotactic polypropylene in a temperature gradient. Colloid Polym Sci. 2001;279:939–46.

    Article  CAS  Google Scholar 

  23. Byelov D, Panine P, Remerie K, Biemond E, Alfonso GC, de Jeu WH. Crystallization under shear in isotactic polypropylene containing nucleators. Polymer. 2008;49:3076–83.

    Article  CAS  Google Scholar 

  24. Fillon B, Thierry A, Wittmann JC, Lotz B. Self-nucleation and recrystallization of polymers. Isotactic polypropylene, β phase: β-α conversion and β-α growth transitions. J Polym Sci Part B Polym Phys. 1993;31:1407–24.

    Article  CAS  Google Scholar 

  25. Bai H, Wang Y, Zhang Z, Han L, Li Y, Liu L, Zhou Z, Men Y. Influence of annealing on microstructure and mechanical properties of isotactic polypropylene with β-phase nucleating agent. Macromolecules. 2009;42:6647–55.

    Article  CAS  Google Scholar 

  26. Xu J-Z, Liang Y-Y, Huang H-D, Zhong G-J, Lei J, Chen C, Li Z-M. Isothermal and nonisothermal crystallization of isotactic polypropylene/graphene oxide nanosheet nanocomposites. J Polym Res. 2012;19:9975.

    Article  CAS  Google Scholar 

  27. Bao R-Y, Cao J, Liu Z-Y, Yang W, Xie B-H, Yang M-B. Towards balanced strength and toughness improvement of isotactic polypropylene nanocomposites by surface functionalized graphene oxide. J Mater Chem A. 2014;2:3190–9.

    Article  CAS  Google Scholar 

  28. Zhang Y-F, Xin Z. Isothermal crystallization behaviors of isotactic polypropylene nucleated with α/β compounding nucleating agents. J Polym Sci Part B Polym Phys. 2007;45:590–6.

    Article  CAS  Google Scholar 

  29. Bai H, Wang Y, Zhang Q, Liu L, Zhou Z. A comparative study of polypropylene nucleated by individual and compounding nucleating agents. I. Melting and isothermal crystallization. J Appl Polym Sci. 2009;111:1624–37.

    Article  CAS  Google Scholar 

  30. Zhao S, Xin Z. Nucleation characteristics of the α/β compounded nucleating agents and their influences on crystallization behavior and mechanical properties of isotactic polypropylene. J Polym Sci Part B Polym Phys. 2010;48:653–65.

    Article  CAS  Google Scholar 

  31. Lorenzo AT, Müller AJ. Estimation of the nucleation and crystal growth contributions to the overall crystallization energy barrier. J Polym Sci Part B Polym Phys. 2008;46:1478–87.

    Article  CAS  Google Scholar 

  32. Su F, Li X, Zhou W, Zhu S, Ji Y, Wang Z, Qi Z, Li L. Direct formation of isotactic poly(1-butene) form I crystal from memorized ordered melt. Macromolecules. 2013;46:7399–405.

    Article  CAS  Google Scholar 

  33. Cavallo D, Gardella L, Portale G, Müller AJ, Alfonso GC. Self-nucleation of isotactic poly(1-butene) in the trigonal modification. Polymer. 2014;55:137–42.

    Article  CAS  Google Scholar 

  34. Li X, Su F, Ji Y, Tian N, Lu J, Wang Z, Qi Z, Li L. Influence of the memory effect of a mesomorphic isotactic polypropylene melt on crystallization behavior. Soft Matter. 2013;9:8579.

    Article  CAS  Google Scholar 

  35. Kang J, Chen Z, Zhou T, Yang F, Chen J, Cao Y, Xiang M. Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene with different melt structures. J Polym Res. 2014;21:384.

    Article  CAS  Google Scholar 

  36. Li H, Yan S. Surface-induced polymer crystallization and the resultant structures and morphologies. Macromolecules. 2011;44:417–28.

    Article  CAS  Google Scholar 

  37. Liu Q, Sun X, Li H, Yan S. Orientation-induced crystallization of isotactic polypropylene. Polymer. 2013;54:4404–21.

    Article  CAS  Google Scholar 

  38. Cavallo D, Azzurri F, Balzano L, Funari SS, Alfonso GC. Flow memory and stability of shear-induced nucleation precursors in isotactic polypropylene. Macromolecules. 2010;43:9394–400.

    Article  CAS  Google Scholar 

  39. Cavallo D, Portale G, Balzano L, Azzurri F, Bras W, Peters GW, Alfonso GC. Real-time WAXD detection of mesophase development during quenching of propene/ethylene copolymers. Macromolecules. 2010;43:10208–12.

    Article  CAS  Google Scholar 

  40. Zhang B, Chen J, Cui J, Zhang H, Ji F, Zheng G, Heck B, Reiter G, Shen C. Effect of shear stress on crystallization of isotactic polypropylene from a structured melt. Macromolecules. 2012;45:8933–7.

    Article  CAS  Google Scholar 

  41. Zhang B, Chen J, Ji F, Zhang X, Zheng G, Shen C. Effects of melt structure on shear-induced β-cylindrites of isotactic polypropylene. Polymer. 2012;53:1791–800.

    Article  CAS  Google Scholar 

  42. Kang J, Weng G, Chen Z, Chen J, Cao Y, Yang F, Xiang M. New understanding in the influence of melt structure and β-nucleating agents on the polymorphic behavior of isotactic polypropylene. RSC Adv. 2014;4:29514–26.

    Article  CAS  Google Scholar 

  43. Kang J, Chen Z, Yang F, Chen J, Cao Y, Weng G, Xiang M. Understanding the effects of nucleating agent concentration on the polymorphic behavior of β-nucleated isotactic polypropylene with different melt structures. Colloid Polym Sci. 2015;293:2061–73.

    Article  CAS  Google Scholar 

  44. Wang B, Chen Z, Kang J, Yang F, Chen J, Cao Y, Xiang M. Influence of melt structure on the crystallization behavior and polymorphic composition of polypropylene random copolymer. Thermochim Acta. 2015;604:67–76.

    Article  CAS  Google Scholar 

  45. Zhang Q, Chen Z, Wang B, Chen J, Yang F, Kang J, Cao Y, Xiang M, Li H. Effects of melt structure on crystallization behavior of isotactic polypropylene nucleated with α/β compounded nucleating agents. J Appl Polym Sci. 2015. https://doi.org/10.1002/app.41355.

  46. Menyhárd A, Dora G, Horváth Z, Faludi G, Varga J. Kinetics of competitive crystallization of β- and α-modifications in β-nucleated iPP studied by isothermal stepwise crystallization technique. J Therm Anal Calorim. 2011;108:613–20.

    Article  CAS  Google Scholar 

  47. Molnár J, Menyhárd A. Separation of simultaneously developing polymorphic modifications by stepwise crystallization technique in non-isothermal calorimetric experiments. J Therm Anal Calorim. 2016;124:1463–9.

    Article  CAS  Google Scholar 

  48. Kang J, Xiong B, Liu D, Cao Y, Chen J, Yang F, Xiang M. Understanding in the morphology and tensile behavior of isotactic polypropylene cast films with different stereo-defect distribution. J Polym Res. 2014;21:485.

    Article  CAS  Google Scholar 

  49. Chen Z, Kang W, Kang J, Chen J, Yang F, Cao Y, Xiang M. Non-isothermal crystallization behavior and melting behavior of Ziegler-Natta isotactic polypropylene with different stereo-defect distribution nucleated with bi-component β-nucleation agent. Polym Bull. 2015;72:3283–303.

    Article  CAS  Google Scholar 

  50. Dietz W. Effect of cooling on crystallization and microstructure of polypropylene. Polym Eng Sci. 2016;56:1291–302.

    Article  CAS  Google Scholar 

  51. Chen Y-H, Mao Y-M, Li Z-M, Hsiao BS. Competitive growth of α- and β-crystals in β-nucleated isotactic polypropylene under shear flow. Macromolecules. 2010;43:6760–71.

    Article  CAS  Google Scholar 

  52. Zhang Q, Peng H, Kang J, Cao Y, Xiang M. Effects of melt structure on non-isothermal crystallization behavior of isotactic polypropylene nucleated with α/β compounded nucleating agents. Polym Eng Sci. 2017;57:989–97.

    Article  CAS  Google Scholar 

  53. Yamamoto Y, Inoue Y, Onai T, Doshu C, Takahashi H, Uehara H. Deconvolution analyses of differential scanning calorimetry profiles of β-crystallized polypropylenes with synchronized x-ray measurements. Macromolecules. 2007;40:2745–50.

    Article  CAS  Google Scholar 

  54. Horvath Z, Sajo IE, Stoll K, Menyhard A, Varga J. The effect of molecular mass on the polymorphism and crystalline structure of isotactic polypropylene. Express Polym Lett. 2010;4:101–14.

    Article  CAS  Google Scholar 

  55. Varga J. β-Modification of polypropylene and its two-component systems. J Therm Anal. 1989;35:1891–912.

    Article  CAS  Google Scholar 

  56. Lotz B, Fillon B, Thierry A. Low Tc growth transitions in isotactic polypropylene: β to α and α to smectic phases. Polym Bull. 1991;25:101–5.

    CAS  Google Scholar 

  57. Wang G, Shen X, Wang B, Yao J, Park J. Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon. 2009;47:1359–64.

    Article  CAS  Google Scholar 

  58. Kang J, Yang F, Wu T, Li H, Cao Y, Xiang M. Polymerization control and fast characterization of the stereo-defect distribution of heterogeneous Ziegler-Natta isotactic polypropylene. Eur Polym J. 2012;48:425–34.

    Article  CAS  Google Scholar 

  59. Müller AJ, Arnal ML. Thermal fractionation of polymers. Prog Polym Sci. 2005;30:559–603.

    Article  CAS  Google Scholar 

  60. Kang J, Gai J, Li J, Chen S, Peng H, Wang B, Cao Y, Li H, Chen J, Yang F, Xiang M. Dynamic crystallization and melting behavior of β-nucleated isotactic polypropylene polymerized with different Ziegler-Natta catalysts. J Polym Res. 2013;20:70.

    Article  CAS  Google Scholar 

  61. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  62. Blaine RL, Kissinger HE. Homer Kissinger and the Kissinger equation. Thermochim Acta. 2012;540:1–6.

    Article  CAS  Google Scholar 

  63. Kang J, Li J, Chen S, Peng H, Wang B, Cao Y, Li H, Chen J, Gai J, Yang F, Xiang M. Investigation of the crystallization behavior of isotactic polypropylene polymerized with different Ziegler-Natta catalysts. J Appl Polym Sci. 2013;129:2663–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the National Natural Science Foundation of China (NSFC 51503134, 51421061, 51721091) and the State Key Laboratory of Polymer Materials Engineering (Grant No. SKLPME 2017-3-02) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Zeng, F., Chen, J. et al. Effects of ordered structure on non-isothermal crystallization kinetics and subsequent melting behavior of β-nucleated isotactic polypropylene/graphene oxide composites. J Therm Anal Calorim 136, 1667–1678 (2019). https://doi.org/10.1007/s10973-018-7776-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7776-8

Keywords

Navigation