Skip to main content
Log in

Thermal reactivity of aluminized polymer-bonded explosives based on non-isothermal thermogravimetry and calorimetry measurements

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermal decomposition behavior and kinetics of aluminized polymer-bonded explosives (PBXs) based on l,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) bonded by hydroxyl-terminated polybutadiene (HTPB) and aluminum powder were investigated. Different from the literature, aluminized PBXs have undergone three-steps decomposition measured by thermogravimetry which could be best distinguished by derivative thermogravimetric study. Results revealed that the thermal decomposition behavior has been significantly influenced in the presence of Al and HTPB matrix, especially reducing the thermal stability than that of neat HMX. The reactivity of aluminized PBXs has been rationalized on the basis of dependence of the effective activation energy upon conversion determined via the popular isoconversional methods and compared with peak temperature at maximum reaction rate method. Resulting activation energy dependence obtained for the first stage has been found to be 82.2–231.3 kJ mol−1 in the region of 0.05–0.25 for the slow pyrolysis, followed by a significant variation in the anomalous activation energy with conversion from 446.9 to 1282.8 kJ mol−1 in the region of 0.3–0.6 for the second-stage decomposition of aluminized PBXs. The above-mentioned values are in good agreement with those obtained from the Kissinger method. Thermodynamic parameters for the formation of the activated complex, and critical temperature and self-accelerating for thermal explosion were also determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yu Y, Chen S, Li T, Jin S, Zhang G, Chenb M, Li L. Study on a novel high energetic and insensitive munitions formulation: TKX-50 based melt cast high explosive. RSC Adv. 2017;31(7):485–92.

    Google Scholar 

  2. Agrawal JP. High energy materials: propellants, explosives and pyrotechnics. Hoboken: Wiley; 2010.

    Book  Google Scholar 

  3. Talawar M, Sivabalan R, Mukundan T, Muthurajan H, Sikder AK, Gandhe BR, Rao AS. Environmentally compatible next generation green energetic materials (GEMs). J Hazard Mater. 2009;162:589–607.

    Article  CAS  Google Scholar 

  4. Badgujar D, Talawar M, Asthana S, Mahulikar P. Advances in science and technology of modern energetic materials: an overview. J Hazard Mater. 2008;151:289–305.

    Article  CAS  PubMed  Google Scholar 

  5. An C, Li F, Song X, Wang Y, Guo X. Surface coating of RDX with a composite of TNT and an energetic-polymer and its safety investigation. Propell Explos Pyrotech. 2009;34:400–5.

    Article  CAS  Google Scholar 

  6. Mishra VS, Bhagat AL, Vadali SR, Singh VK, Wasnik RD, Asthana S. Effect of tungsten on aluminized melt cast high explosive formulations. Cent Eur J Energ Mater. 2012;9:147–54.

    CAS  Google Scholar 

  7. Carney JR, Miller JS, Gump JC, Pangilinan GI. Time-resolved optical measurements of the post-detonation combustion of aluminized explosives. Rev Sci Instrum. 2006;77:63–103.

    Article  CAS  Google Scholar 

  8. Arkhipov VI, Makhov MN, Pepekin VI, Shchetinin VG. Investigations into detonation of aluminized high explosives. Chem Phys Rep. 2000;18:2329–37.

    Google Scholar 

  9. Vadhe PP, Pawar RB, Sinha RK, Asthana SN, Rao AS. Cast aluminized explosives. Combust Explos Shock Waves. 2008;44:461–77.

    Article  Google Scholar 

  10. Muravyev N, Frolov Y, Pivkina A, Monogarov K, Ordzhonikidze O, Bushmarinov I, Korlyukov A. Influence of particle size and mixing technology on combustion of HMX/Al compositions. Propell Explos Pyrotech. 2010;35:226–32.

    Article  CAS  Google Scholar 

  11. Manner VW, Pemberton SJ, Gunderson JA, Herrera TJ, Lloyd JM, Salazar PJ, Rae P, Tappan BC. The Role of aluminum in the detonation and post-detonation expansion of selected cast HMX-based explosives. Propell Explos Pyrotech. 2012;37:198–206.

    Article  CAS  Google Scholar 

  12. Gogulya MF, Makhov MN, Dolgoborodov AY, Brazhnikov MA, Arkhipov VI, Shchetinin VG. Mechanical sensitivity and detonation parameters of aluminized explosives. Combust Explos Shock Waves. 2004;40:445–57.

    Article  Google Scholar 

  13. Lucio B, Fuente J, Luis DL. Kinetic and thermodynamic analysis of the polymerization of polyurethanes by a rheological method. Thermochim Acta. 2016;625:28–35.

    Article  CAS  Google Scholar 

  14. Krabbendam-LaHaye ELM, De Klerk WPC, Kramer RE. The kinetic behaviour and thermal stability of commercially available explosives. J Therm Anal Calorim. 2005;80:495–501.

    Article  CAS  Google Scholar 

  15. Bunyan P, Baker C, Turner N. Application of heat conduction calorimetry to high explosives. Thermochim Acta. 2003;401:9–16.

    Article  CAS  Google Scholar 

  16. Keshavarz MH, Moradi S, Ebrahimi B, Rahimi H, Madram A. A simple accurate model for prediction of deflagration temperature of energetic compounds. J Therm Anal Calorim. 2013;112:1453–63.

    Article  CAS  Google Scholar 

  17. Zou HM, Chen SS, Li X, Jin SH, Niu H, Wang F, Chao H, Fang T, Shu QH. Preparation, thermal investigation and detonation properties of ε-CL-20-based polymer-bonded explosives with high energy and reduced sensitivity. Mater Exp. 2017;7:199–208.

    Article  CAS  Google Scholar 

  18. Sikder AK. Studies on energetic compounds. J Therm Anal Calorim. 2005;79:631–5.

    Article  CAS  Google Scholar 

  19. Yan QL, Zeman S, Elbeih A. Recent advances in thermal analysis and stability evaluation of insensitive plastic bonded explosives (PBXs). Thermochim Acta. 2012;537:1–12.

    Article  CAS  Google Scholar 

  20. Yan QL, Zeman S, Selesovsky J, Svoboda R, Elbeih A. Thermal behaviour and decomposition kinetics of Formex-bonded explosives containing different cyclic nitramines. J Therm Anal Calorim. 2013;111:1419–30.

    Article  CAS  Google Scholar 

  21. Yan QL, Zeman S, Svoboda R, Elbeih A. Thermodynamic properties, decomposition kinetics and reaction models of BCHMX and its Formex bonded explosive. Thermochim Acta. 2012;547:150–60.

    Article  CAS  Google Scholar 

  22. Yan QL, Zeman S, Zhao F, Elbeih A. Non-isothermal analysis of C4 bonded explosives containing different cyclic nitramines. Thermochim Acta. 2013;556:6–12.

    Article  CAS  Google Scholar 

  23. Yan QL, Zeman Z, Elbeih A. Thermal behaviour and decomposition kinetics of Viton A bonded explosives containing attractive cyclic nitramines. Thermochim Acta. 2013;562:56–64.

    Article  CAS  Google Scholar 

  24. Yan QL, Zeman Z, Zang T, Elbeih A. Non-isothermal decomposition behaviour of fluorel bonded explosives containing attractive cyclic nitramines. Thermochim Acta. 2013;574:10–8.

    Article  CAS  Google Scholar 

  25. Yan QL, Zeman Z, Elbeih A, Zbynek A. The influence of the semtex matrix on the thermal behaviour and decomposition kinetics of cyclic nitramines. Cent Eur J Energ Mater. 2013;10:509–58.

    CAS  Google Scholar 

  26. Zeman Z, Elbeih A, Yan QL. Note on the use of the vacuum stability test in the study of initiation reactivity of attractive cyclic nitramines in Formex. J Therm Anal Calorim. 2013;111:1503–6.

    Article  CAS  Google Scholar 

  27. Zeman S, Elbeih A, Yan QL. Notes on the use of the vacuum stability test in the study of initiation reactivity of attractive cyclic nitramines in the C4 matrix. J Therm Anal Calorim. 2013;112:1433–7.

    Article  CAS  Google Scholar 

  28. Kader AM, Bhwmick AK. Thermal ageing, degradation and swelling of acrylic rubber, fluororubber and their blends containing polyfunctionalacrylates. Polym Degrad Stab. 2003;79:283–95.

    Article  CAS  Google Scholar 

  29. Shuping Z, Yulong W, Mingde Y, Chun L, Jummao T. Pyrolysis characteristics and kinetics of the marine microalgae Dunaliellatertiolecta using thermogravimetric analyzer. Bioresour Technol. 2010;101:359–65.

    Article  CAS  PubMed  Google Scholar 

  30. Criado JM, Malek J, Ortega A. Applicability of the master plots in kinetic analysis of non-isothermal data. Thermochim Acta. 1989;147:377–85.

    Article  CAS  Google Scholar 

  31. Nunez L, Fraga F, Nunez MR, Villanueva M. Thermogravimetric study of the decomposition process of the system BADGE (n = 0)/1,2 DCH. Polym. 2000;41:4635–41.

    Article  CAS  Google Scholar 

  32. Poletto M, Dettenborn J, Pistor V, Zeni M, Zattera AJ. Materials produced from plant biomass. Part I: evaluation of thermal stability and pyrolysis of wood. Mater Res. 2010;13:375–9.

    Article  CAS  Google Scholar 

  33. Sanchez-Jimenez PE, Perez-Maqueda LA, Perejon A, Criado JM. A new model for the kinetic analysis of thermal degradation of polymers driven by random scission. Polym Degrad Stab. 2010;95:733–9.

    Article  CAS  Google Scholar 

  34. Sanchez-Silva L, Lopez-Gonzalez D, Villasenor J, Sánchez P, Valverde JL. Thermogravimetric-mass spectrometric analysis of lignocellulosic and marine biomass pyrolysis. Bioresour Technol. 2012;109:163–72.

    Article  CAS  PubMed  Google Scholar 

  35. Tiptipakorn S, Damrongsakku LS, Ando S, Hemvichian K, Rimdusit S. Thermal degradation behaviours of polybenzoxazine and silicon-containing polyimide blends. Polym Degrad Stab. 2007;92:1265–78.

    Article  CAS  Google Scholar 

  36. Maulding HV, Zoglio MA. Flexible non-isothermal stability studies. J Pharm Sci. 1970;59:333–7.

    Article  CAS  PubMed  Google Scholar 

  37. Flynn JH, Wall LA. General treatment of the thermogravimetry of polymers. J Res Natl Bur Stand A Phys Chem. 1966;70:487–523.

    Article  CAS  Google Scholar 

  38. Ozawa T. A new method of analyzing thermogravimetric data. Bull Chem Soc Jpn. 1965;38:1881–6.

    Article  CAS  Google Scholar 

  39. Zoglio MA, Windheuser JJ, Maulding HV Jr, Kornblum SS, Jacobs AL, Hamot H. Linear nonisothermal stability studies. J Pharm Sci. 1968;57:2080–5.

    Article  CAS  PubMed  Google Scholar 

  40. Doyle CD. Estimating isothermal life from thermogravimetric data. J Appl Polym Sci. 1962;6:639–42.

    Article  CAS  Google Scholar 

  41. Doyle CD. Kinetic analysis of thermogravimetric data. J Appl Polym Sci. 1961;5:285–92.

    Article  CAS  Google Scholar 

  42. Vyaovkin S. Computational aspects of kinetics project-the light at the end of tunnel? Thermochim Acta. 2000;355:155–63.

    Article  Google Scholar 

  43. Pistor V, Ornaghi FG, Ornaghi HL, Fiorio JR, Zattera AJ. Thermal characterization of oil extracted from ethylene-propylene-dienetermopolymer residues (EPDM-r). Thermochim Acts. 2010;510:93–6.

    Article  CAS  Google Scholar 

  44. Vyazovkin S, Wight CA. Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta. 1999;340:53–68.

    Article  Google Scholar 

  45. Sbirrazzuoli N, Vyazovkin S. Learning about epoxy cure mechanisms from isoconversional analysis of DSC data. Thermochim Acta. 2002;388:289–98.

    Article  CAS  Google Scholar 

  46. Vyazovkin SV, Goryachko VI, Lesnikovich AI. An approach to the solution of the inverse kinetic problem in the case of complex processes. Part III. Parallel independent reactions. ThermochimActa. 1992;197:41–51.

    Article  CAS  Google Scholar 

  47. Vyazovkin S. Conversion dependence of activation energy for model DSC curves of consecutive reactions. Thermochim Acta. 1994;236:1–13.

    Article  CAS  Google Scholar 

  48. Poletto M, Zattera AJ, Santana MC. Thermal decomposition of wood: kinetics and degradation mechanisms. Bioresour Technol. 2012;126:7–12.

    Article  CAS  PubMed  Google Scholar 

  49. Akahira T, Sunose T. Res Report CHIBA Inst Technol. 1971;16:22.

    Google Scholar 

  50. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29:1702–6.

    Article  CAS  Google Scholar 

  51. Friedman H. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci C. 1964;6:183–95.

    Article  Google Scholar 

  52. Lee JS, Hsu CK, Chang CL. A study on the thermal decomposition behaviors of PETN, RDX, HNS and HMX. Thermochim Acta. 2002;392:173–6.

    Article  Google Scholar 

  53. Carty P, Metcalfe E, Saben TJ. Thermal analysis of plasticised PVC containing flame retardant/smoke suppressant inorganic and organometallic iron compounds. Fir Saf J. 1991;17:45–56.

    Article  CAS  Google Scholar 

  54. Elbeih A, Abd-Elghany M, Klapçtke TM. Kinetic Parameters of PBX Based on Cis-1,3,4,6-tetranitroocta-hydroimidazo-[4,5-d] imidazole obtained by isoconversional methods using different thermal analysis techniques. Propell Explos Pyrotech. 2017;42:1–10.

    Article  CAS  Google Scholar 

  55. Singh G, Felix SP, Pandey DK, Agrawal JP, Sikder AK. Studies on energetic compounds Part XXXIX. Thermal analysis of a plastic bonded explosive containing RDX and HTPB. J Therm Anal Calorim. 2005;79:631–5.

    Article  CAS  Google Scholar 

  56. Singh A, Sharma TC, Kishore P. Thermal degradation kinetics and reaction models of 1,3,5-triamino-2,4,6-trinitrobenzene-based plastic-bonded explosives containing fluoropolymer matrices. J Therm Anal Calorim. 2017;129:1403–14.

    Article  CAS  Google Scholar 

  57. Singh A, Sharma TC, Narang JK, Kishore P, Srivastava A. Thermal decomposition and kinetics of plastic bonded explosives based on mixture of HMX and TATB with polymer matrices. Def Technol. 2017;13:22–32.

    Article  Google Scholar 

  58. Abd-Elghany M, Elbeih A, Hassanein S. Thermal behavior and decomposition kinetics of RDX and RDX/HTPB composition using various techniques and methods. Cent Eur J Energ Mater. 2016;13:714–35.

    Article  CAS  Google Scholar 

  59. Pinheiro GFM, Lourenço VL, Iha K. Influence of the heating rate in the thermal decomposition of HMX. J Ther Anal Calorim. 2002;67:445–52.

    Article  CAS  Google Scholar 

  60. Elbeih A, Abd-Elghany M, Elshenawy T. Application of vacuum stability test to determine thermal decomposition kinetics of nitramines bonded by polyurethane matrix. Acta Astronaut. 2016;132:124–30.

    Article  CAS  Google Scholar 

  61. Zhang P, Guo XY, Zhang JY, Jiao QJ. Application of liquid paraffin in castable CL-20-based PBX. J Energ Mater. 2014;32:278–92.

    Article  CAS  Google Scholar 

  62. Abusaidi H, Ghaieni HR. Thermal analysis and kinetic decomposition of Nitro-functionalized hydroxyl-terminated polybutadiene bonded explosive. J Therm Anal Calorim. 2017;127:2301–6.

    Article  CAS  Google Scholar 

  63. Abusaidi H, Ghaieni HR, Pourmortazavi SM, Motamed-Shariati SH. Effect of nitro content on thermal stability and decomposition kinetics of Nitro-HTPB. J Therm Anal Calorim. 2016;124:935–41.

    Article  CAS  Google Scholar 

  64. Wang H. Thermal decomposition of HTPB/AP and HTPB/HMX mixtures with low content of oxidizer. J Therm Anal Calorim. 2014;19:1673–8.

    Google Scholar 

  65. Sinha YK, Sridhar BTN, Kishnakumar R. Study of thermo-mechanical properties of HTPB–paraffin solid fuel. J Sci Eng. 2016;41:4683–90.

    CAS  Google Scholar 

  66. Singh A, Singh S, Sharma TC, Srivastava A. Physicochemical properties and kinetic analysis for some fluoropolymers by differential scanning calorimetry. Polym Bull. 2018;75:2315–38.

    Article  CAS  Google Scholar 

  67. Xu WB, Bao SP, Shen SJ, Wang W, Hang GP, He PS. Differential scanning calorimetric study on the curing behavior of epoxy resin/diethylenetriamine/organic montmorillonite nanocomposite. J Polym Sci B Polym Phys. 2003;41:378–86.

    Article  CAS  Google Scholar 

  68. Iglesias M, Eyler N, Canizo A. Kinetics of the thermal decomposition reaction of diethylketone cyclic triperoxide in acetone-toluene and acetone-1-propanol binary solvent mixtures. J Phys Org Chem. 2009;22:96–100.

    Article  CAS  Google Scholar 

  69. Guo S, He J, Luo W, Liu F. Research on the thermal decomposition reaction kinetics and mechanism of pyridinol-blocked isophorone diisocyanate. Materials. 2016;9:110. https://doi.org/10.3390/ma9020110.

    Article  CAS  PubMed Central  Google Scholar 

  70. Tsyshevsky RV, Sharia O, Kuklja MM. Molecular theory of detonation initiation: insight from first principles modelling of the decomposition mechanisms of organic nitro energetic materials. Molecules. 2016;21:236.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang RI, Hu TL, Xie RZ, Li FP. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC. Thermochim Acta. 1994;244:171–6.

    Article  CAS  Google Scholar 

  72. Sovizi MR, Hajimirsadeghi SS, Naderizadeh B. Effect of particle size on thermal decomposition of nitrocellulose. J Hazard Mater. 2009;168:1134–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their thanks to Dr. Manjit Singh, Distinguished Scientist/Director, for his constant motivation, guidance and fruitful discussion. The authors are also thankful to TC Sharma and Mahesh Kumar for their kind support for providing thermal analytical facilities and recording some TG measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjun Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Soni, P.K., Sarkar, C. et al. Thermal reactivity of aluminized polymer-bonded explosives based on non-isothermal thermogravimetry and calorimetry measurements. J Therm Anal Calorim 136, 1021–1035 (2019). https://doi.org/10.1007/s10973-018-7730-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7730-9

Keywords

Navigation