Skip to main content
Log in

In situ differential thermal analysis device for evaluating high-speed phase transitions

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thixoforming involves heating different types of alloys to the semisolid state at high heating rates and forming in die-casting machines or conventional presses. At temperatures higher than the solidus and lower than the liquidus, the mush metal behaves like a high-viscosity thixotropic material. Therefore, determining the thermodynamic behavior of the solid-to-liquid transition is paramount to control thixoforming processes. This article describes a simple, novel experimental setup based on differential thermal analysis (DTA) for analyzing the phase transitions in an alloy heated using high heating rates typical of industrial applications. A365 alloy was chosen to demonstrate the effectiveness of the method as the phase transformations for this alloy in semisolid materials (SSM) processing are well understood. Samples were heated to 750 °C using constant linear heating rates of 5, 10, 15, 20, 25, 50, 75, 100 and 125 °C min in a Norax 25 kW 8 kHz induction furnace with an Omron E5CK temperature controller. AISI 316 austenitic stainless steel was used as the inert reference. Comparison of the results of DTA using the proposed method and the results of simulation with Thermo-Calc® indicates that the proposed in situ DTA device and its method is suitable for analyzing phase transitions when high heating rates are used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Flemings MC. Behavior of metal alloys in the semisolid state. Metall Trans A. 1991;22(5):957–81. https://doi.org/10.1007/BF02661090.

    Article  Google Scholar 

  2. Kirkwood DH, Suéry M, Kapranos P, Atkinson HV, Young KP. Semi-solid processing of alloys. Springer Series Materials Science; (2010), 124. https://doi.org/10.1007/978-3-642-00706-4.

    Book  Google Scholar 

  3. Ferdian D, Lacaze J, Lizarralde I, Niklas A, Fernández-Calvo AI. Study of the effect of cooling rate on eutectic modification in A356 aluminium alloys. Mater Sci Forum. 2013;765:130–4. https://doi.org/10.4028/www.scientific.net/MSF.765.130.

    Article  CAS  Google Scholar 

  4. Sekar K, Kanjirathikal A, Joseph MA. Comparison study of as-cast and T6 condition of microstructure, bending strength and double shear strength of A356 alloy by gravity, vacuum and squeeze casting. Appl Mech Mater. 2014;592–594:102–5. https://doi.org/10.4028/www.scientific.net/AMM.592-594.102.

    Article  CAS  Google Scholar 

  5. Liu D, Atkinson HV, Jones H. Thermodynamic prediction of thixoformability in alloys based on the Al–Si–Cu and Al–Si–Cu–Mg systems. Acta Mater. 2005;53:3807–19. https://doi.org/10.1016/j.actamat.2005.04.028.

    Article  CAS  Google Scholar 

  6. Zoqui EJ, Benati DM, Proni CTW, Torres LV. Thermodynamic evaluation of the thixoformability of Al–Si alloys. Calphad. 2016;52:98–109. https://doi.org/10.1016/j.calphad.2015.12.006.

    Article  CAS  Google Scholar 

  7. León VLD, Valdés AF, Torres JT. Dilatometric and calorimetric studies on the phase transformations of the A380-type aluminum alloy during solidification and heat treatment. J Therm Anal Calorim. 2017;130:1751. https://doi.org/10.1007/s10973-017-6548-1.

    Article  CAS  Google Scholar 

  8. Farahany S, Ourdjini A, Idris MH. The usage of computer-aided cooling curve thermal analysis to optimise eutectic refiner and modifier in Al–Si alloys. J Therm Anal Calorim. 2012;109:105–11. https://doi.org/10.1007/s10973-011-1708-1.

    Article  CAS  Google Scholar 

  9. Alexandrov B, Lippold J, Tatman J, Murray G. Non-equilibrium phase transformation diagrams in engineering alloys. In: Trends in welding research, proceedings of the 8th international conference; (2008) p. 467–476. https://doi.org/10.1361/cp2008twr467.

  10. Klančnik G, Medved J, Mrvar P. Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) as a method of material investigation. RMZ Mater Geoenviron. 2010;57(1):127–42.

    Google Scholar 

  11. Oliveira A, Freire RCS, Deep GS, Barros PR. A digital differential thermal analysis instrument. Measurement. 1998;23:47–54. https://doi.org/10.1016/S0263-2241(98)00008-6.

    Article  Google Scholar 

  12. Wendlandt WW. The development of thermal analysis instrumentation 1955–1985. Thermochim Acta. 1986;100:1–22. https://doi.org/10.1016/0040-6031(86)87048-4.

    Article  CAS  Google Scholar 

  13. Chen SW, Huang CC. The relationship between the peak shape of a DTA curve and the shape of a phase diagram. Chem Eng Sci. 1995;50(3):417–31. https://doi.org/10.1016/0009-2509(94)00244-L.

    Article  CAS  Google Scholar 

  14. Cheng SZD, Li ChY, Calhoun BH, Zhu L, Zhou WW. Thermal analysis: the next two decades. Thermochim Acta. 2000;355:59–68. https://doi.org/10.1016/S0040-6031(00)00437-88.

    Article  CAS  Google Scholar 

  15. Alexandrov BT, Lippold JC. In situ determination of phase transformations and structural changes during non-equilibrium material processing. In: Kannengiesser et al. (eds.) In-situ studies with photons, neutrons and electrons scattering; (2010). p. 113–131. https://doi.org/10.1007/978-3-642-14794-4_8.

    Chapter  Google Scholar 

  16. Martinez LM, Videa M, Mesquita J. Design, construction and calibration of a portable multi sample DTA setup. Thermochim Acta. 2013;560:89–94. https://doi.org/10.1016/j.tca.2013.03.016.

    Article  CAS  Google Scholar 

  17. Gong X, Guo Z, Wang Z. Variation on anthracite combustion efficiency with CeO2 and Fe2O3 addition by differential thermal analysis (DTA). Energy. 2010;35:506–11. https://doi.org/10.1016/j.energy.2009.10.017.

    Article  CAS  Google Scholar 

  18. Brollo GL, Proni CTW, de Paula LC, Zoqui EJ. An alternative method to identify critical temperatures for semisolid materials process applications using differentiation. Thermochim Acta. 2017;651:22–33. https://doi.org/10.1016/j.tca.2017.02.010.

    Article  CAS  Google Scholar 

  19. Farahany S, Ourdjini A, Idris MH, Shabestari SG. Computer-aided cooling curve thermal analysis of near eutectic Al–Si–Cu–Fe alloy. J Therm Anal Calorim. 2013;114:705–17. https://doi.org/10.1007/s10973-013-3005-7.

    Article  CAS  Google Scholar 

  20. Flynn JH. Analysis of DSC results by integration. Thermochim Acta. 1993;217:29–149. https://doi.org/10.1016/0040-6031(93)85104-H.

    Article  Google Scholar 

  21. Proni CTW, Robert MH, Zoqui EJ. Effect of casting procedures in the structure and flow behaviour of semisolid A356 alloy. Arch Mater Sci Eng; (2015);73 2:82–93. http://www.amse.acmsse.h2.pl/vol73_2/7324.pdf.

  22. Moradi M, Ahmadabadi MN, Poorganji B, Heidarian B, Furuhara T. EBSD and DTA characterization of A356 alloy deformed by ECAP during reheating and partial re-melting. Metall Mater Trans A. 2014;45A:1540–51. https://doi.org/10.1007/s11661-013-2093-0.

    Article  CAS  Google Scholar 

  23. Kumar SD, Mandal A, Chakraborty M. Solid fraction evolution characteristics of semi-solid A356 alloy and in situ A356–TiB2 composites investigated by differential thermal analysis. Int J Miner Metall Mater. 2015;22(4):389–94. https://doi.org/10.1007/s12613-015-1084-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank CAPES (Federal Agency for the Support and Evaluation of Postgraduate Education, Brazil) (CAPES/MES-Cuba Program, Project No. 095/2010), CNPq (National Council for Scientific and Technological Development, Brazil) (CNPq PQ Grant No. 306896-2013-3) and FAPESP (São Paulo Research Foundation) (Project No. 2015/22143-3) for providing technical and financial support. The authors are also indebted to the Faculty of Mechanical Engineering at the State University of Campinas for the practical support very kindly provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugênio José Zoqui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roca, A.S., Fals, H.D.C. & Zoqui, E.J. In situ differential thermal analysis device for evaluating high-speed phase transitions. J Therm Anal Calorim 134, 1589–1597 (2018). https://doi.org/10.1007/s10973-018-7629-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7629-5

Keywords

Navigation