Skip to main content
Log in

Thermal, morphological, spectroscopic and biological study of chitosan, hydroxyapatite and wollastonite biocomposites

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The objective of this work was to investigate the thermal, morphological, spectroscopic and cytotoxicity of hydroxyapatite–wollastonite powders obtained via sol–gel synthesis and of biocomposites chitosan–hydroxyapatite–wollastonite. A mixture of wollastonite, calcium nitrate tetrahydrate and ammonium dihydrogen phosphate with a ratio of 1:2:1.2 or 2:2:1.2, respectively, was produced following drying and heat treatment where the final composite was macerated. These powders were added to a chitosan solution where it was further dried and neutralized. The ceramic loads were used in various ratios. The materials were characterized by TG, DSC, DRX, MEV, FTIR and cytotoxicity. Based on the studied properties, it can be said that the sol–gel process proved to be effective in obtaining hydroxyapatite–wollastonite powders. By TG, it was verified that the thermal stability of the powders increased when a greater percentage of wollastonite was used. For biocomposites with higher percentages of load, there was increase in thermal stability, probably attributed to the higher compaction of the biocomposites when compared to the pure. By DSC, there was a tendency of displacement of the endothermic and exothermic peaks, suggesting that the biocomposite with higher load has greater capacity of retention and interaction stronger with molecules of water, but also has greater thermal stability. The samples present biomaterial potential with prospects of endodontic use, which showed cell viability in L929 fibroblast cell culture above 70.00%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dziadek M, Stodolak-Zych E, Cholewa-Kowalska K. Biodegradable ceramic-polymer composites for biomedical applications: a review. Mater Sci Eng C Mater Biol Appl. 2017;71:1175–91.

    Article  CAS  Google Scholar 

  2. Owens GJ, Singh RK, Foroutan F, Alqaysi M, Han C-M, Mahapatra C, et al. Sol–gel based materials for biomedical applications. Prog Mater Sci. 2016;77:1–79.

    Article  CAS  Google Scholar 

  3. Pires ALR, Bierhalz ACK, Moraes ÂM. Biomaterials: types, applications, and market. Quim Nova. 2015;38:957–71.

    CAS  Google Scholar 

  4. Ai M, Du Z, Zhu S, Geng H, Zhang X, Cai Q, et al. Composite resin reinforced with silver nanoparticles-laden hydroxyapatite nanowires for dental application. Dent Mater. 2017;33(1):12–22.

    Article  CAS  Google Scholar 

  5. Mishra AK. Sol–gel based nanoceramic materials: preparation, properties and applications. Johannesburg: Springer; 2017.

    Book  Google Scholar 

  6. Sidane D, Rammal H, Beljebbar A, Gangloff SC, Chicot D, Velard F, et al. Biocompatibility of sol–gel hydroxypatite-titania composite and bilayer coatings. Mater Sci Eng C. 2017;72:650–8.

    Article  CAS  Google Scholar 

  7. Buriti JS, Morais CRS, Santos LNRM, Oliveira FC, Buriti BMAB, Queiroz AJP, et al. Thermal, structural and spectroscopic properties of silico-aluminous vitreous monoliths doped with neodymium and erbium via sol–gel process. J Therm Anal Calorim. 2017;131:725–33.

    Article  Google Scholar 

  8. Domínguez-Trujillo C, Peón E, Chicardi E, Pérez H, Rodríguez-Ortiz JA, Pavón JJ, et al. Sol–gel deposition of hydroxyapatite coatings on porous titanium for biomedical applications. Surf Coat Technol. 2018;333:158–62.

    Article  Google Scholar 

  9. Fihri A, Len C, Varma RS, Solhy A. Hydroxyapatite: a review of syntheses, structure and applications in heterogeneous catalysis. Coord Chem Rev. 2017;347:48–76.

    Article  CAS  Google Scholar 

  10. Kalaycioglu Z, Torlak E, Akin-Evingur G, Ozen I, Erim FB. Antimicrobial and physical properties of chitosan films incorporated with turmeric extract. Int J Biol Macromol. 2017;101:882–8.

    Article  CAS  Google Scholar 

  11. Kaviyarasu K, Mariappan A, Neyvasagam K, Ayeshamariam A, Pandi P, Palanichamy RR, et al. Photocatalytic performance and antimicrobial activities of HAp-TiO2 nanocomposite thin films by sol–gel method. Surf Interfaces. 2016;6:247–55.

    Article  Google Scholar 

  12. Kuriakose TA, Kalkura SN, Palanichamy M, Arivuoli D, Dierks K, Bocelli G, et al. Synthesis of stoichiometric nano crystalline hydroxyapatite by ethanol-based sol–gel technique at low temperature. J Cryst Growth. 2004;263(1):517–23.

    Article  CAS  Google Scholar 

  13. Theodorou GS, Kontonasaki E, Theocharidou A, Bakopoulou A, Bousnaki M, Hadjichristou C, et al. Sol–gel derived Mg-based ceramic scaffolds doped with zinc or copper ions: preliminary results on their synthesis, characterization, and biocompatibility. Int J Biomater. 2016;2016:3858301.

    Article  Google Scholar 

  14. Borowska MZ, Chełminiak D, Kaczmarek H, Kaczmarek-Kędziera A. Effect of side substituents on thermal stability of the modified chitosan and its nanocomposites with magnetite. J Therm Anal Calorim. 2016;124(3):1267–80.

    Article  Google Scholar 

  15. Olaru AM, Marin L, Morariu S, Pricope G, Pinteala M, Tartau-Mititelu L. Biocompatible chitosan based hydrogels for potential application in local tumour therapy. Carbohyd Polym. 2018;179:59–70.

    Article  CAS  Google Scholar 

  16. Grząbka-Zasadzińska A, Amietszajew T, Borysiak S. Thermal and mechanical properties of chitosan nanocomposites with cellulose modified in ionic liquids. J Therm Anal Calorim. 2017;130(1):143–54.

    Article  Google Scholar 

  17. Golie WM, Upadhyayula S. An investigation on biosorption of nitrate from water by chitosan based organic-inorganic hybrid biocomposites. Int J Biol Macromol. 2017;97:489–502.

    Article  CAS  Google Scholar 

  18. Budnyak TM, Yanovska ES, Kołodyńska D, Sternik D, Pylypchuk IV, Ischenko MV, et al. Preparation and properties of organomineral adsorbent obtained by sol–gel technology. J Therm Anal Calorim. 2016;125(3):1335–51.

    Article  CAS  Google Scholar 

  19. Zaldivar MP, Santilli CV, Covas CAP, Pulcinelli SH. Thermal properties, nanoscopic structure and swelling behavior of chitosan/(ureasil–polyethylene oxide hybrid) blends. J Therm Anal Calorim. 2017;130(2):791–8.

    Article  Google Scholar 

  20. Psak H, Saurabh CK, Adnan AS, Nurul Fazita MR, Syakir MI, Davoudpour Y, et al. A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: properties and their applications. Carbohyd Polym. 2016;150:216–26.

    Article  Google Scholar 

  21. Shaari N, Kamarudin SK. Chitosan and alginate types of bio-membrane in fuel cell application: an overview. J Power Sources. 2015;289:71–80.

    Article  CAS  Google Scholar 

  22. Aguiar AE, de Silva LG, de Paula Barbosa HF, Glória RF, Espanhol-Soares M, Gimenes R. Synthesis of Al2O3–0.5B2O3–SiO2 fillers by sol–gel method for dental resin composites. J Non-Cryst Solids. 2017;458:86–96.

    Article  CAS  Google Scholar 

  23. Bottino MC, Pankajakshan D, Nör JE. Advanced scaffolds for dental pulp and periodontal regeneration. Dent Clin. 2017;61(4):689–711.

    Article  Google Scholar 

  24. Costa JBZ, Silva F, Dultra CA, Souza LF, Santos MCNE. O uso de membranas biológicas para regeneração óssea guiada em implantodontia. Revista Bahiana de Odontologia. 2016;7(1):14–21.

    Google Scholar 

  25. E’Gues MAM, Paula M, Goissis G. Collagen composite with silicate and hydroxyapatite as endodontic material: preparation and characterization. Revista Odonto Ciência. 2008;23(2):134–40.

    Google Scholar 

  26. Encinas-Romero MA, Peralta-Haley J, Valenzuela-García JL, Castillón-Barraza FF. Synthesis and structural characterization of hydroxyapatite-wollastonite biocomposites, produced by an alternative sol-gel route. J Biomater Nanobiotechnol. 2013;04(04):327–33.

    Article  Google Scholar 

  27. Goudouri OM, Vogel C, Grunewald A, Detsch R, Kontonasaki E, Boccaccini AR. Sol–gel processing of novel bioactive Mg-containing silicate scaffolds for alveolar bone regeneration. J Biomater Appl. 2016;30(6):740–9.

    Article  CAS  Google Scholar 

  28. Pankajakshan D, Albuquerque M, Bottino M. Electrospun nanofibers for regenerative dentistry. In: Uyar T, Kny E, editors. Electrospun materials for tissue engineering and biomedical applications. Amsterdam: Elsevier; 2017. p. 357–84.

    Chapter  Google Scholar 

  29. Shrestha A, Kishen A. Antibacterial nanoparticles in endodontics: a review. J Endod. 2016;42(10):1417–26.

    Article  Google Scholar 

  30. Encinas-Romero MA, Aguayo-Salinas S, Castillo SJ, Castilln-Barraza FF, Castao VM. Synthesis and characterization of hydroxyapatitewollastonite composite powders by sol–gel processing. Int J Appl Ceram Technol. 2008;5(4):401–11.

    Article  CAS  Google Scholar 

  31. Harabi A, Chehlatt S. Preparation process of a highly resistant wollastonite bioceramics using local raw materials. J Therm Anal Calorim. 2012;111(1):203–11.

    Article  Google Scholar 

  32. Neamtu J, Bubulica MV, Rotaru A, Ducu C, Balosache OE, Manda VC, et al. Hydroxyapatite–alendronate composite systems for biocompatible materials. J Therm Anal Calorim. 2016;127(2):1567–82.

    Article  Google Scholar 

  33. Shavandi A, Bekhit Ael D, Ali MA, Sun Z, Gould M. Development and characterization of hydroxyapatite/beta-TCP/chitosan composites for tissue engineering applications. Mater Sci Eng C Mater Biol Appl. 2015;56:481–93.

    Article  CAS  Google Scholar 

  34. Sivaperumal VR, Mani R, Nachiappan MS, Arumugam K. Direct hydrothermal synthesis of hydroxyapatite/alumina nanocomposite. Mater Charact. 2017;134:416–21.

    Article  CAS  Google Scholar 

  35. Szczes A, Holysz L, Chibowski E. Synthesis of hydroxyapatite for biomedical applications. Adv Coll Interface Sci. 2017;249:321–30.

    Article  CAS  Google Scholar 

  36. Tõnsuaadu K, Gross KA, Plūduma L, Veiderma M. A review on the thermal stability of calcium apatites. J Therm Anal Calorim. 2011;110(2):647–59.

    Article  Google Scholar 

  37. Antonino RSCMQ, Lia Fook BRP, Lima VAO, Rached RÍF, Lima EPN, Lima RJS, et al. Preparation and characterization of chitosan obtained from shells of shrimp (Litopenaeus vannamei Boone). Mar Drugs. 2017;15(5):141.

    Article  Google Scholar 

  38. ISO (2009) Biological evaluation of medical devices- Part 5: Teste for in vitro cytotoxicity.

  39. Skwarek E. Thermal analysis of hydroxyapatite with adsorbed oxalic acid. J Therm Anal Calorim. 2015;122(1):33–45.

    Article  CAS  Google Scholar 

  40. Gonzalez G, Costa-Vera C, Borrero LJ, Soto D, Lozada L, Chango JI, et al. Effect of carbonates on hydroxyapatite self-activated photoluminescence response. J Lumin. 2017. https://doi.org/10.1016/j.jlumin.2017.11.058.

    Article  Google Scholar 

  41. Budnyak TM, Yanovska ES, Kichkiruk OY, Sternik D, Tertykh VA. Natural minerals coated by biopolymer chitosan: synthesis, physicochemical, and adsorption properties. Nanoscale Res Lett. 2016;11(1):492. https://doi.org/10.1186/s11671-016-1696-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blachnio M, Budnyak TM, Derylo-Marczewska A, Marczewski AW, Tertykh VA. Chitosan-silica hybrid composites for removal of sulfonated azo dyes from aqueous solutions. Langmuir. 2018;34(6):2258–73. https://doi.org/10.1021/acs.langmuir.7b04076.

    Article  CAS  PubMed  Google Scholar 

  43. Liu T, Dan W, Dan N, Liu X, Liu X, Peng X. A novel grapheme oxide-modified collagen-chitosan bio-film for controlled growth factor release in wound healing applications. Mater Sci Eng C Mater Biol Appl. 2017;77:202–11.

    Article  CAS  Google Scholar 

  44. Rong SY, Mubarak NM, Tanjung FA. Structure-property relationship of cellulose nanowhiskers reinforced chitosan biocomposite films. J Environ Chem Eng. 2017;5(6):6132–6.

    Article  CAS  Google Scholar 

  45. Sánchez R, Alonso G, Valencia C, Franco JM. Rheological and TGA study of acylated chitosan gel-like dispersions in castor oil: influence of acyl substituent and acylation protocol. Chem Eng Res Des. 2015;100:170–8.

    Article  Google Scholar 

  46. Akyuz L, Kaya M, Koc B, Mujtaba M, Ilk S, Labidi J, et al. Diatomite as a novel composite ingredient for chitosan film with enhanced physicochemical properties. Int J Biol Macromol. 2017;105(Pt 2):1401–11.

    Article  CAS  Google Scholar 

  47. Modrzejewska Z, Nawrotek K, Zarzycki R, Douglas T. Structural characteristics of thermosensitive chitosan glutaminate hydrogels. Progress Chem Appl Chitin Deriv. 2013;18:93–106.

    CAS  Google Scholar 

  48. Podust T, Kulik T, Palyanytsya B, Gun’ko V, Tóth A, Mikhalovska L, et al. Chitosan-nanosilica hybrid materials: preparation and properties. Appl Surf Sci. 2014;320:563–9.

    Article  CAS  Google Scholar 

  49. Saldias C, Diaz DD, Bonardd S, Soto-Marfull C, Cordoba A, Saldias S, et al. In situ preparation of film and hydrogel bio-nanocomposites of chitosan/fluorescein-copper with catalytic activity. Carbohyd Polym. 2018;180:200–8.

    Article  CAS  Google Scholar 

  50. Guinesi LS, Cavalheiro ÉTG. The use of DSC curves to determine the acetylation degree of chitin/chitosan samples. Thermochim Acta. 2006;444(2):128–33.

    Article  CAS  Google Scholar 

  51. Corazzari I, Nisticò R, Turci F, Faga MG, Franzoso F, Tabasso S, et al. Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: thermal degradation and water adsorption capacity. Polym Degrad Stab. 2015;112:1–9.

    Article  CAS  Google Scholar 

  52. Geetha V, Gomathi T, Sudha PN. Preparation and characterization of Graphene-grafted-chitosan/hydroxyapatite composite. J Chem Pharm Res. 2015;7(5):871–6.

    CAS  Google Scholar 

  53. Lino MES, Ruela ALM, Trevisan MG, Pereira GR. Influence of hydration and crosslinking in transdermal delivery of nicotine from chitosan-based gels by thermal analysis. J Therm Anal Calorim. 2017;130(3):1455–61.

    Article  CAS  Google Scholar 

  54. Topcu C, Caglar B, Onder A, Coldur F, Caglar S, Guner EK, et al. Structural characterization of chitosan-smectite nanocomposite and its application in the development of a novel potentiometric monohydrogen phosphate-selective sensor. Mater Res Bull. 2018;98:288–99.

    Article  CAS  Google Scholar 

  55. Mishra R, Soni K, Mehta T. Mucoadhesive vaginal film of fluconazole using cross-linked chitosan and pectin. J Therm Anal Calorim. 2017;130(3):1683–95.

    Article  CAS  Google Scholar 

  56. Mosselmans G, Biesemans M, Willem R, Wastiels J, Leermakers M, Rahier H, et al. Thermal hardening and structure of a phosphorus containing cementitious model material: phosphoric acid-wollastonite. J Therm Anal Calorim. 2007;88(3):723–9.

    Article  CAS  Google Scholar 

  57. Anjaneyulu U, Sasikumar S. Bioactive nanocrystalline wollastonite synthesized by sol–gel combustion method by using eggshell waste as calcium source. Bull Mater Sci. 2014;37(2):207–12.

    Article  CAS  Google Scholar 

  58. Dambrauskas T, Baltakys K, Eisinas A. Formation and thermal stability of calcium silicate hydrate substituted with Al3+ ions in the mixtures with CaO/SiO2 = 1.5. J Therm Anal Calorim. 2017;131:501–12.

    Article  Google Scholar 

  59. Dhivya S, Saravanan S, Sastry TP, Selvamurugan N. Nanohydroxyapatite-reinforced chitosan composite hydrogel for bone tissue repair in vitro and in vivo. J Nanobiotechnol. 2015;13:40.

    Article  CAS  Google Scholar 

  60. João C, Almeida R, Silva J, Borges J. A simple sol–gel route to the construction of hydroxyapatite inverted colloidal crystals for bone tissue engineering. Mater Lett. 2016;185:407–10.

    Article  Google Scholar 

  61. Morsy R, Ali SS, El-Shetehy M. Development of hydroxyapatite-chitosan gel sunscreen combating clinical multidrug-resistant bacteria. J Mol Struct. 2017;1143:251–8.

    Article  CAS  Google Scholar 

  62. Nazeer MA, Yilgör E, Yilgör I. Intercalated chitosan/hydroxyapatite nanocomposites: promising materials for bone tissue engineering applications. Carbohyd Polym. 2017;175:38–46.

    Article  CAS  Google Scholar 

  63. Colorado H, Pleitt J, Hiel C, Yang J, Hahn H, Castano CH. Wollastonite based-chemically bonded phosphate ceramics with lead oxide contents under gamma irradiation. J Nucl Mater. 2012;425(1):197–204.

    Article  CAS  Google Scholar 

  64. Fraga AF, Filho EdA, Rigo ECdS, Boschi AO. Synthesis of chitosan/hydroxyapatite membranes coated with hydroxycarbonate apatite for guided tissue regeneration purposes. Appl Surf Sci. 2011;257(9):3888–92.

    Article  CAS  Google Scholar 

  65. Lima HA, Lia FMV, Ramdayal S. Preparation and characterization of chitosan-insulin-tripolyphosphate membrane for controlled drug release: effect of cross linking agent. J Biomater Nanobiotechnol. 2014;05(04):211–9.

    Article  CAS  Google Scholar 

  66. Dang Q, Liu K, Liu C, Xu T, Yan J, Yan F, et al. Preparation, characterization, and evaluation of 3,6-O-N-acetylethylenediamine modified chitosan as potential antimicrobial wound dressing material. Carbohyd Polym. 2018;180:1–12.

    Article  CAS  Google Scholar 

  67. Shakir M, Jolly R, Khan MS, Rauf A, Kazmi S. Nano-hydroxyapatite/β-CD/chitosan nanocomposite for potential applications in bone tissue engineering. Int J Biol Macromol. 2016;93(Part A):276–89.

    Article  CAS  Google Scholar 

  68. Dumont VC, Mansur HS, Mansur AA, Carvalho SM, Capanema NS, Barrioni BR. Glycol chitosan/nanohydroxyapatite biocomposites for potential bone tissue engineering and regenerative medicine. Int J Biol Macromol. 2016;93:1465–78.

    Article  CAS  Google Scholar 

  69. Iqbal H, Ali M, Zeeshan R, Mutahir Z, Iqbal F, Nawaz MAH, et al. Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose (HPMC) spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes. Colloids Surf B. 2017;160:553–63.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Postdoctoral Program of the Coordination of Improvement of Higher Education Personnel (PNPD), the Coordination of Improvement of Higher Education Personnel (CAPES), the Laboratory of Evaluation and Development of Biomaterials of the Northeast (CERTBIO) and the Federal University of Campina Grande (UFCG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josué da Silva Buriti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buriti, J.S., Barreto, M.E.V., Santos, K.O. et al. Thermal, morphological, spectroscopic and biological study of chitosan, hydroxyapatite and wollastonite biocomposites. J Therm Anal Calorim 134, 1521–1530 (2018). https://doi.org/10.1007/s10973-018-7498-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7498-y

Keywords

Navigation