Skip to main content
Log in

Thermo-structural analysis of TeO2–Li2O–MoO3 glasses

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

This work discusses some new insights into the structural and thermal properties of the glass system \(\hbox {TeO}_{2}\)\(\hbox {Li}_{2}\hbox {O}\)\(\hbox {MoO}_{3}\). Glasses in the composition \((80 - 2x)\) \(\hbox {TeO}_{2}\) − \(x\hbox {Li}_{2}\hbox {O}\) − \((20 + x)\) \(\hbox {MoO}_{3}\) (TLM) where \(x\,=\,0,\,5,\,10,\,15\) and 20 mol% were prepared by the melt-quenching technique and were characterized by X-ray diffraction (XRD), Raman spectroscopy, density, refractive index, and differential scanning calorimetry (DSC). XRD data confirmed the amorphous character of the samples. In addition, the glass transition (\(T_{\mathrm{g}}\)), the onset crystallization (\(T_{\mathrm{x}}\)), and the first exothermic peak at the crystallization temperatures (\(T_{\mathrm{c}}\)) were determined from DSC scans. Thermal stability (\(\Delta T = T_{\mathrm{x}}-T_{\mathrm{g}}\)) increases up to \(x\,=\,15\,\hbox {mol}\%\) followed by a decrease for higher x. Raman results showed that when x increases, the Te–O–Mo linkages form, meaning that Li\(_2\)O addition breaks the Te units and Mo-units in the studied glasses. The Te–O–Mo linkages enhance the thermal stability values, increasing the oxygen packing density. The formation of these linkages also alters the refractive index and the electronic polarizability behaviors. In summary, this work shows that the addition of \(\hbox {Li}_2\hbox {O}\) in the \(\hbox {TeO}_{2}\)\(\hbox {MoO}_{3}\) system enhances the thermal stability and changes the electronic polarizability behavior, showing the potential of the studied material for technological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aida K, Komatsu T, Dimitrov V. Thermal stability, electronic polarisability and optical basicity of ternary tellurite glasses. Phys Chem Glasses. 2001;42(2):103–11.

    CAS  Google Scholar 

  2. Brady GW. Structure of tellurium oxide glass. J Chem Phys. 1957;27(1):300–3.

    Article  CAS  Google Scholar 

  3. Capanema W, Yukimitu K, Moraes JCS, Santos FA, Figueiredo MS, Sidel SM, Reynoso VCS, Sakai OA, Medina AN. The structure and optical dispersion of the refractive index of tellurite glass. Opt Mater. 2011;33(11):1569–72.

    Article  CAS  Google Scholar 

  4. Çelikbilek M, Erçin Ersundu A, Aydin S. Glass formation and characterization studies in the TeO\(_{2}\)-WO\(_{3}\)-Na\(_{2}\)O system. J Am Ceram Soc. 2013;96(5):1470–6.

    Article  Google Scholar 

  5. Chowdari BVR, Tan KL, Ling F. Synthesis and characterization of xCu\(_{2}\)o\(\cdot\)-yTeO\(_{2}\)-\(\cdot\)(1-x-y)MoO\(_{3}\) glass system. Solid State Ion. 1998;113:711–21.

    Article  Google Scholar 

  6. Dietzel A. Glass structure and glass properties. Glasstech. 1968;22:41.

    Google Scholar 

  7. Dimitriev Y, Dimitrov V, Arnaudov M. Ir spectra and structures of tellurite glasses. J Mater Sci. 1983;18(5):1353–8.

    Article  CAS  Google Scholar 

  8. Dimitrov V, Komatsu T. Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses. J Non Cryst Solids. 1999;249(2):160–79.

    Article  CAS  Google Scholar 

  9. Dimitrov V, Komatsu T. An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength. J Univ Chem Technol Metall. 2010;45(3):219–50.

    CAS  Google Scholar 

  10. Dimitrov V, Komatsu T. Optical basicity and chemical bonding of ternary tellurite glasses. Phys Chem Glasses Eur J Glass Sci Technol Part B. 2014;55(1):13–7.

    CAS  Google Scholar 

  11. Dimitrov V, Komatsu T. Polarizability, basicity and chemical bonding of single and multicomponent oxide glasses. J Chem Technol Metall. 2015;50(4):387–96.

    CAS  Google Scholar 

  12. Dimitrov V, Sakka S. Electronic oxide polarizability and optical basicity of simple oxides. I. J Appl Phys. 1996;79(3):1736–40.

    Article  CAS  Google Scholar 

  13. El-Mallawany R. The optical properties of tellurite glasses. J Appl Phys. 1992;72(5):1774–7.

    Article  CAS  Google Scholar 

  14. El-Mallawany R. Devitrification and vitrification of tellurite glasses. J Mater Sci Mater Electron. 1995;6(1):1–3.

    Article  CAS  Google Scholar 

  15. El-Mallawany R. Tellurite glasses: Part 2. Anelastic, phase separation, debye temperature and thermal properties. Mater Chem Phys. 1999;60(2):103–31.

    Article  CAS  Google Scholar 

  16. El-Mallawany RA. Tellurite glasses handbook: physical properties and data. Boca Raton: CRC press; 2011.

    Book  Google Scholar 

  17. Elkhoshkhany N, El-Mallawany R, Syala E. Mechanical and thermal properties of TeO\(_{2}\)–Bi\(_{2}\)0\(_{3}\)–V\(_{2}\)O\(_{5}\)–Na\(_{2}\)O–TiO\(_{2}\) glass system. Ceram Int. 2016;42(16):19,218–24.

    Article  CAS  Google Scholar 

  18. Fargin E, Berthereau A, Cardinal T, Le Flem G, Ducasse L, Canioni L, Segonds P, Sarger L, Ducasse A. Optical non-linearity in oxide glasses. J Non Cryst Solids. 1996;203:96–101.

    Article  CAS  Google Scholar 

  19. Gomes JL Jr, Piazzetta RLS, Gonçalves A, Somer A, da Cruz GK, Serbena FC, Novatski A. Correlation between nonbridging oxygens and the thermal and optical properties of the TeO\(_{2}\)-Li\(_{2}\)O-MoO\(_{3}\) glassy system. J Mater Res. 2015;30(16):2417–24.

    Article  CAS  Google Scholar 

  20. Gulenko A, Masson O, Berghout A, Hamani D, Thomas P. Atomistic simulations of TeO\(_{2}\)-based glasses: interatomic potentials and molecular dynamics. Phys Chem Chem Phys. 2014;16(27):14,150–60.

    Article  CAS  Google Scholar 

  21. Hajer S, Halimah M, Azmi Z, Azlan M. Optical properties of zinc–borotellurite doped samarium. Chalcogenide Lett. 2014;11(11):553–66.

    Google Scholar 

  22. Halimah M, Daud W, Sidek H, Zaidan A, Zainal A. Optical properties of ternary tellurite glasses. Mater Sci Pol. 2010;28(1):173–80.

    CAS  Google Scholar 

  23. Jauhariyah MN, Setyarsih W, Yantidewi M, Marzuki A, et al. Refractive index measurement of tellurite glasses by using Brewster angle method. In: Sensors, instrumentation, measurement and metrology (ISSIMM), international seminar on. IEEE; 2016. pp. 71–4.

  24. Jose R, Arai Y, Ohishi Y. Optical properties of MoO\(_{3}\) containing tellurite glasses. Appl Phys Lett. 2008;93(16):161–901.

    Article  Google Scholar 

  25. Kalampounias AG, Boghosian S. Distribution of tellurite polymorphs in the xM\(_{2}\)O-(1- x)TeO\(_{2}\) (M= Li, Na, K, Cs, and Rb) binary glasses using Raman spectroscopy. Vib Spectrosc. 2012;59:18–22.

    Article  CAS  Google Scholar 

  26. Kaur A, Khanna A, González F, Pesquera C, Chen B. Structural, optical, dielectric and thermal properties of molybdenum tellurite and borotellurite glasses. J Non Cryst Solids. 2016;444:1–10.

    Article  CAS  Google Scholar 

  27. Kim SH, Yoko T, Sakka S. Linear and nonlinear optical properties of Teo\(_{2}\) glass. J Am Ceram Soc. 1993;76(10):2486–90.

    Article  CAS  Google Scholar 

  28. Lakshminarayana G, Kaky KM, Baki S, Lira A, Nayar P, Kityk I, Mahdi M. Physical, structural, thermal, and optical spectroscopy studies of TeO\(_{2}\)-B\(_{2}\)O\(_{3}\)-MoO\(_{3}\)-ZnO-R\(_{2}\)O (R= Li, Na, and K/MO (M= Mg, Ca, and Pb) glasses. J Alloys Compd. 2017;690:799–816.

    Article  CAS  Google Scholar 

  29. Manikandan N, Ryasnyanskiy A, Toulouse J. Thermal and optical properties of TeO\(_{2}\)-ZnO-BaO glasses. J Non Cryst Solids. 2012;358(5):947–51.

    Article  CAS  Google Scholar 

  30. Manning S, Ebendorff-Heidepriem H, Monro TM. Ternary tellurite glasses for the fabrication of nonlinear optical fibres. Opt Mater Express. 2012;2(2):140–52.

    Article  CAS  Google Scholar 

  31. Mekki A, Khattak G, Wenger L. Structural and magnetic properties of MoO\(_{3}\)-TeO\(_{2}\) glasses. J Non Cryst Solids. 2005;351(30–32):2493–500.

    Article  CAS  Google Scholar 

  32. Moraes JCS, Nardi J, Sidel S, Mantovani B, Yukimitu K, Reynoso V, Malmonge L, Ghofraniha N, Ruocco G, Andrade L, et al. Relation among optical, thermal and thermo-optical properties and niobium concentration in tellurite glasses. J Non Cryst Solids. 2010;356(41):2146–50.

    Article  CAS  Google Scholar 

  33. Nasu H, Matsushita O, Kamiya K, Kobayashi H, Kubodera K. Third harmonic generation from Li\(_{2}\)O-TiO\(_{2}\)-TeO\(_{2}\) glasses. J Non Cryst Solids. 1990;124(2–3):275–7.

    Article  CAS  Google Scholar 

  34. Pal M, Hirota K, Tsujigami Y, Sakata H. Structural and electrical properties of MoO\(_{3}\)-TeO\(_{2}\) glasses. J Phys D Appl Phys. 2001;34(4):459.

    Article  CAS  Google Scholar 

  35. Ramamoorthy RK, Bhatnagar AK. Effect of ZnO and PbO/ZnO on structural and thermal properties of tellurite glasses. J Alloys Compd. 2015;623:49–54.

    Article  CAS  Google Scholar 

  36. Reben M, Grelowska I, Kosmal M, Szumera M, et al. Influence of modifiers on the thermal characteristic of glasses of the Teo\(_{2}\)-P\(_{2}\)o\(_{5}\)-ZnO-PbF\(_{2}\) system. J Therm Anal Calorim. 2016;125(3):1279–86.

    Article  CAS  Google Scholar 

  37. Saad M, Poulain M. Glass forming ability criterion. In: Mat. Sci. Forum, 1987; vol. 19, pp. 11–18. Trans Tech Publ

  38. Sakida S, Hayakawa S, Yoko T. Part 2. 125 Te NMR study of M\(_{2}\)O-Te\({O}_{2}\) (M= Li, Na, K, Rb and Cs) glasses. J Non Cryst Solids. 1999;243(1):13–25.

    Article  CAS  Google Scholar 

  39. Sekiya T, Mochida N, Ogawa S. Structural study of MoO\(_{3}\)-TeO\(_{2}\) glasses. J Non Cryst Solids. 1995;185(1–2):135–44.

    Article  CAS  Google Scholar 

  40. Sekiya T, Mochida N, Ohtsuka A, Tonokawa M. Raman spectra of Mo\(_{1/2}\)-TeO\(_{2}\) (m= Li, Na, K, Rb, Cs and Tl) glasses. J Non Cryst Solids. 1992;144:128–44.

    Article  CAS  Google Scholar 

  41. Sokolov V, Plotnichenko V, Koltashev V, Grishin I. On the structure of molybdate-tellurite glasses. J Non Cryst Solids. 2009;355(4–5):239–51.

    Article  CAS  Google Scholar 

  42. Souri D. Physical and thermal characterization and glass stability criteria of amorphous silver-vanadate-tellurate system at different heating rates: Inducing critical Ag\(_{2}\)O/V\(_{2}\)O\(_{5}\) ratio. J Non Cryst Solids. 2017;475:136–43.

    Article  CAS  Google Scholar 

  43. Souri D, Elahi M. Effect of high electric field on the dc conduction of TeO\(_{2}\)-V\(_{2}\)O\(_{5}\)-MoO\(_{3}\) amorphous bulk material. Czechoslov J Phys. 2006;56(4):419–25.

    Article  CAS  Google Scholar 

  44. Souri D, Honarvar F, Tahan ZE. Characterization of semiconducting mixed electronic-ionic TeO\(_{2}\)V\(_{2}\)O\(_{5}\)Ag\(_{2}\)O glasses by employing ultrasonic measurements and vicker’s microhardness. J Alloys Compd. 2017;699:601–10.

    Article  CAS  Google Scholar 

  45. Souri D, Mohammadi M, Zaliani H. Effect of antimony on the optical and physical properties of Sb-V\(_{2}\)O\(_{5}\)-TeO\(_{2}\) glasses. Electron Mater Lett. 2014;10(6):1103–8.

    Article  CAS  Google Scholar 

  46. Souri D, Shahmoradi Y. Calorimetric analysis of non-crystalline TeO\(_{2}\)-V\(_{2}\)O5-Sb\(_{2}\)O\(_{3}\). J Therm Anal Calorim. 2017;129(1):601–7.

    Article  CAS  Google Scholar 

  47. Souri D, Shomalian K. Band gap determination by absorption spectrum fitting method (asf) and structural properties of different compositions of (60-x)V\(_{2}\)o\(_{5}\)-40TeO\(_{2}\)-xSb\(_{2}\)o\(_{3}\) glasses. J Non Cryst Solids. 2009;355(31–33):1597–601.

    Article  CAS  Google Scholar 

  48. Tanaka K, Yoko T, Yamada H, Kamiya K. Structure and ionic conductivity of LiCl- Li\(_{2}\)O-TeO\(_{2}\) glasses. J Non Cryst Solids. 1988;103(2–3):250–6.

    Article  CAS  Google Scholar 

  49. Tikhonova EL, Lyakaev DV, Grishin IA, Kotkova AM, Markin AV. Thermodynamic properties of (TeO\(_{2}\)) \(_{n}\) (MoO\(_{3}\))\(_{1-n}\) glasses. Inorg Mater. 2017;53(11):1201–8.

    Article  CAS  Google Scholar 

  50. Yukimitu K, Oliveira R, Araujo E, Moraes JCS, Avanci L. DSC studies on crystallization mechanisms of tellurite glasses. Thermochim Acta. 2005;426(1–2):157–61.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João L. Gomes Jr.

Additional information

The authors acknowledge funding agencies CNPq, CAPES and Fundação Araucária. We thanks also technical support Clabmu and CRRQ-UEPG.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, J.L., Gonçalves, A., Somer, A. et al. Thermo-structural analysis of TeO2–Li2O–MoO3 glasses. J Therm Anal Calorim 134, 1439–1445 (2018). https://doi.org/10.1007/s10973-018-7452-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7452-z

Keywords

Navigation