Journal of Thermal Analysis and Calorimetry

, Volume 133, Issue 1, pp 177–188 | Cite as

Thermal analysis of ternary gypsum-based binders stored in different environments

  • Lenka Scheinherrová
  • Magdaléna Doleželová
  • Jakub Havlín
  • Anton Trník


Although gypsum belongs to the low-energy environmentally friendly binders, its wider applications in building constructions are limited due to the negative effect of moisture on its mechanical properties. When calcined gypsum (CaSO4·1/2H2O) transforms into its hydrated form (CaSO4·2H2O), it is partially soluble in water and it has a relatively low strength. This problem can be resolved when gypsum is used as a part of binary or ternary binders. In this paper, a system consisting of calcined gypsum, lime, and silica fume is presented as a functional solution for a wider utilization of gypsum in wet environments. For this purpose, the newly designed materials were stored in different environments (laboratory conditions in air or water) up to 182 days. The effect of silica fume on the hydration process and the growth of the main products is evaluated by using differential scanning calorimetry and thermogravimetry in the temperature range from 25 to 1000 °C with a heating rate of 5 °C min−1 in an argon atmosphere. The carbonation level of studied materials is also evaluated. Besides this, the information about the thermal stability of studied materials is provided. These results are supported by evolved gas analysis, X-ray diffraction, and scanning electron microscopy. The basic physical and mechanical properties are determined to provide more detailed information about the behavior of the designed materials under various conditions at selected days of hydration. The addition of silica fume to the gypsum–lime system activates the pozzolanic reaction of the analyzed pastes, which is proved by the presence of the CSH phase and by the consumption of portlandite in the mixtures. Wet environment speeds up the hydration processes and prevents samples from carbonation.


Gypsum Ternary binders Silica fume Thermal properties Calorimetry 



This research was supported by the Czech Science Foundation, Project No. GA16-01438S and by Project No. SGS16/199/OHK1/3T/11.


  1. 1.
    Garg M, Jain N, Singh M. Development of alpha plaster from phosphogypsum for cementitious binders. Constr Build Mater. 2009;23(10):3138–43.CrossRefGoogle Scholar
  2. 2.
    Just A, Schmid J, König J. Gypsum plasterboards used as fire protection-Analysis of a database. Stockholm: SP Technical Research Institute of Sweden; 2010.Google Scholar
  3. 3.
    Değirmenci N. Utilization of phosphogypsum as raw and calcined material in manufacturing of building products. Constr Build Mater. 2008;22(8):1857–62.CrossRefGoogle Scholar
  4. 4.
    Fauziah I, Zauyah S, Jamal T. Characterization and land application of red gypsum: a waste product from the titanium dioxide industry. Sci Total Environ. 1996;188(2–3):243–51.CrossRefGoogle Scholar
  5. 5.
    Gazquez MJ, Bolivar JP, Vaca F, García-Tenorio R, Caparros A. Evaluation of the use of TiO2 industry red gypsum waste in cement production. Cem Concr Compos. 2013;37:76–81.CrossRefGoogle Scholar
  6. 6.
    Bhanumathidas N, Kalidas N. Dual role of gypsum: set retarder and strength accelerator. Indian Concr J. 2004;78(3):1–4.Google Scholar
  7. 7.
    Kumar S. Fly ash-lime-phosphogypsum cementitious binder: a new trend in bricks. Mater Struct. 2000;33(1):59–64.CrossRefGoogle Scholar
  8. 8.
    Marinkovic S, Kostic-Pulek A. Examination of the system fly ash–lime–calcined gypsum–water. J Phys Chem Solids. 2007;68(5–6):1121–5.CrossRefGoogle Scholar
  9. 9.
    Shen W, Zhou M, Zhao Q. Study on lime–fly ash–phosphogypsum binder. Constr Build Mater. 2007;21(7):1480–5.CrossRefGoogle Scholar
  10. 10.
    Demir I, Serhat Baspinar M. Effect of silica fume and expanded perlite addition on the technical properties of the fly ash–lime–gypsum mixture. Constr Build Mater. 2008;22(6):1299–304.CrossRefGoogle Scholar
  11. 11.
    Doleželová M, Vimmrová A. Porosity of the ternary gypsum-based binders with different types of Pozzolan. Key Eng Mater. 2016;677:122–7.CrossRefGoogle Scholar
  12. 12.
    Vimmrová A, Keppert M, Michalko O, Černý R. Calcined gypsum–lime–metakaolin binders: design of optimal composition. Cem Concr Compos. 2014;52:91–6.CrossRefGoogle Scholar
  13. 13.
    Tsantaridis LD, Östman BAL, König J. Fire protection of wood by different gypsum plasterboards. Fire Mater. 1999;23(1):45–8.CrossRefGoogle Scholar
  14. 14.
    Leiva C, García Arenas C, Vilches LF, Vale J, Gimenez A, Ballesteros JC, Fernández-Pereira C. Use of FGD gypsum in fire resistant panels. Waste Manage. 2010;30(6):1123–9.CrossRefGoogle Scholar
  15. 15.
    Li J, Zhuang X, Leiva C, Cornejo A, Font O, Querol X, Moeno N, Arenas C, Fernández-Pereira C. Potential utilization of FGD gypsum and fly ash from a Chinese power plant for manufacturing fire-resistant panels. Constr Build Mater. 2015;95:910–21.CrossRefGoogle Scholar
  16. 16.
    Saulnier V, Durif S, Bouchaïr A, Audebert P, Lahmar M. Experimental studies of unprotected and protected steel structures under fire. In: Applications of structural fire engineering (proceedings of the international conference in Dubrovnik). Prague:CTU; 2017.Google Scholar
  17. 17.
    Doleželová M, Scheinherrová L, Krejsová J, Vimmrová A. Effect of high temperatures on gypsum-based composites. Constr Build Mater. 2018;168:82–90.CrossRefGoogle Scholar
  18. 18.
    Tydlitát V, Trník A, Scheinherrová L, Podoba R, Černý R. Application of isothermal calorimetry and thermal analysis for the investigation of calcined gypsum–lime–metakaolin–water system. J Therm Anal Calorim. 2015;122(1):115–22.CrossRefGoogle Scholar
  19. 19.
    Doleželová M, Krejsová J, Vimmrová A. Temperature resistance of the ternary gypsum-based binder with microsilica. AIP Conf Proc. 2016;1752:040003.CrossRefGoogle Scholar
  20. 20.
    Doleželová M, Scheinherrová L, Vimmrová A. Moisture resistance and durability of the ternary gypsum-based binders. Mater Sci Forum. 2015;824:81–7.CrossRefGoogle Scholar
  21. 21.
    Vimmrová A, Doleželová M, Černý R. Ternary gypsum based materials with improved mechanical properties. Stavební Obzor. 2014;7–8:126–31 [in Czech].Google Scholar
  22. 22.
    Doleželová M, Čáchová M, Scheinherrová L, Vimmrová A. Effect of pozzolan on the physical properties and the moisture properties of the gypsum-based binders. Central Europe towards Sustainable Building 2016; Prague: Grada Publishing; 2016. pp. 1049–54.Google Scholar
  23. 23.
    Rovnaníková P, Bayer P, Krmíčková N. Effect of higher temperature on properties of gypsum. In: Sádra 2005. Brno:VUT Brno; 2005. pp. 39–43 [in Czech].Google Scholar
  24. 24.
    Antepara I, Pavlík Z, Žumár J, Pavlíková M, Černý R. Properties of hydrophilic mineral wool for desalination of historical masonry. Mater Sci-Medzg. 2016;22(1):88–93.Google Scholar
  25. 25.
    No EN. 1015, Methods of test for mortar for masonry—Part 11: Determination of flexural and compressive strength of hardened mortar. Prague: Czech Standardization Institute; 2000.Google Scholar
  26. 26.
    Pavlík Z, Keppert M, Pavlíková M, Žumár J, Fořt J, Černý R. Mechanical, hygric, and durability properties of cement mortar with MSWI bottom ash as partial silica sand replacement. Cem Wapno Beton. 2014;19(2):67–80.Google Scholar
  27. 27.
    Couturier J. Method for producing an anhydrite III or α based hydraulic bonding agent. Google Patents US6706113 B1; 2004.Google Scholar
  28. 28.
    Carbone M, Ballirano P, Caminiti R. Kinetics of gypsum dehydration at reduced pressure: an energy dispersive X-ray diffraction study. Eur J Mineral. 2008;20(4):621–7.CrossRefGoogle Scholar
  29. 29.
    Prasad P, Krishna Chaitanya V, Shiva Prasad K, Narayana Rao D. Direct formation of the γ-CaSO4 phase in dehydration process of gypsum: in situ FTIR study. Am Miner. 2005;90(4):672–8.CrossRefGoogle Scholar
  30. 30.
    Chio CH, Sharma SK, Muenow DW. Micro-Raman studies of gypsum in the temperature range between 9 and 373 K. Am Miner. 2004;89(2–3):390–5.CrossRefGoogle Scholar
  31. 31.
    Lou W, Guan B, Wu Z. Dehydration behavior of FGD gypsum by simultaneous TG and DSC analysis. J Therm Anal Calorim. 2011;104(2):661–9.CrossRefGoogle Scholar
  32. 32.
    Zelić J, Rušić D, Krstulović R. Kinetic analysis of thermal decomposition of Ca(OH)2 formed during hydration of commercial Portland cement by DSC. J Therm Anal Calorim. 2002;67(3):613–22.CrossRefGoogle Scholar
  33. 33.
    Dweck J, Buchler PM, Coelho ACV, Cartledge FK. Hydration of a Portland cement blended with calcium carbonate. Thermochim Acta. 2000;346(1–2):105–13.CrossRefGoogle Scholar
  34. 34.
    Clifton JR. Thermal analysis of calcium sulfate dihydrate and supposed a and b forms of calcium sulfate from 25 to 500 C. J Res Natl Bur Stand A: Phys Chem. 1972;76A(1):41–9.CrossRefGoogle Scholar
  35. 35.
    Badens E, Llewellyn P, Fulconis J, Jourdan C, Veesler S, Boistelle R, et al. Study of gypsum dehydration by controlled transformation rate thermal analysis (CRTA). J Solid State Chem. 1998;139(1):37–44.CrossRefGoogle Scholar
  36. 36.
    Kuusik R, Salkkonen P, Niinistö L. Thermal decomposition of calcium sulphate in carbon monoxide. J Therm Anal. 1985;30(1):187–93.CrossRefGoogle Scholar
  37. 37.
    Esteves LP. On the hydration of water-entrained cement–silica systems: combined SEM, XRD and thermal analysis in cement pastes. Thermochim Acta. 2011;518(1–2):27–35.CrossRefGoogle Scholar
  38. 38.
    Zhu H, Newton R, Kleppa O. Enthalpy of formation of wollastonite (CaSiO3) and anorthite (CaAl2Si2O8) by experimental phase equilibrium measurements and high-temperature solution colorimetry. Am Miner. 1994;79(1–2):134–44.Google Scholar
  39. 39.
    Trník A, Scheinherrová L, Kulovaná T, Reiterman P, Vejmelková E, Černý R. Thermal analysis of high-performance mortar containing burnt clay shale as a partial portland cement replacement in the temperature range up to 1000°C. Fire Mater. 2017;41(1):54–64.CrossRefGoogle Scholar
  40. 40.
    Palou MT, Kuzielová E, Novotný R, Šoukal F, Žemlička M. Blended cements consisting of Portland cement–slag–silica fume–metakaolin system. J Therm Anal Calorim. 2016;125(3):1025–34.CrossRefGoogle Scholar
  41. 41.
    Palou MT, Šoukal F, Boháč M, Šiler P, Ifka T, Živica V. Performance of G-Oil Well cement exposed to elevated hydrothermal curing conditions. J Therm Anal Calorim. 2014;118(2):865–74.CrossRefGoogle Scholar
  42. 42.
    Trník A, Scheinherrová L, Medveď I, Černý R. Simultaneous DSC and TG analysis of high-performance concrete containing natural zeolite as a supplementary cementitious material. J Therm Anal Calorim. 2015;121(1):67–73.CrossRefGoogle Scholar
  43. 43.
    Trník A, Fořt J, Pavlíková M, Čáchová M, Čítek D, Kolísko, Černý R, Pavlík Z. UHPFRC at high temperatures–Simultaneous thermal analysis and thermodilatometry. AIP Conference proceedings. 2016;1752:040028.Google Scholar
  44. 44.
    Doleželová M, Vimmrová A. Moisture influence on compressive strength of ternary gypsum-based binders. AIP Conference proceedings; 2017: AIP Publishing.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.Department of Materials Engineering and Chemistry, Faculty of Civil EngineeringCzech Technical University in PraguePragueCzech Republic
  2. 2.Laboratory of Thermal Analysis, Central LaboratoriesInstitute of Chemical TechnologyPrague 6Czech Republic
  3. 3.Department of Physics, Faculty of Natural SciencesConstantine the Philosopher University in NitraNitraSlovakia

Personalised recommendations