Effect of content and particle size of talc on nonisothermal melt crystallization behavior of poly(l-lactide)

Article
  • 2 Downloads

Abstract

This work examined the effect of content and particle size of nucleating agent on nonisothermal melt crystallization behavior of poly(l-lactide) (PLLA). Two different particle sizes of talc were used as the nucleating agents of PLLA. Scanning electron microscopy observation revealed that both big and small particles of talc were homogeneously dispersed in the PLLA matrix. Talc significantly accelerated the nonisothermal melt crystallization rate of PLLA. The effect of smaller particle talc on crystallization was obviously better than that of the bigger one. The activation energy based on Friedman equation was evaluated. Lower activation energy was obtained for nucleated PLLA. Finally, addition of talc did not modify the crystal structure.

Keywords

Poly(l-lactide) Talc Crystallization 

Notes

Acknowledgements

This work is supported by program of Cooperation of Hubei Province and Chinese Academy of Sciences, Jilin Province Science and Technology Agency (20160204030GX), program of Changchun Municipal Scientific and Technologic Development (16SS16), and Building of Innovation Team Plan (IG201703 N). Part of this work is supported by Start-up Foundation for Doctors of Jilin Jianzhu University (861107).

References

  1. 1.
    Gupta B, Revagade N, Hilborn J. Poly(lactic acid) fiber: an overview. Prog Polym Sci. 2007;32:455–82.CrossRefGoogle Scholar
  2. 2.
    Pan H, Qiu Z. Biodegradable poly(l-lactide)/polyhedral oligomeric silsesquioxanes nanocomposites: enhanced crystallization, mechanical properties, and hydrolytic degradation. Macromolecules. 2010;43:1499–506.CrossRefGoogle Scholar
  3. 3.
    Jiang L, Wolcott MP, Zhang J. Study of biodegradable polylactide/poly(butylene adipate-co-terephthalate) blends. Biomacromol. 2006;7:199–207.CrossRefGoogle Scholar
  4. 4.
    Li CL, Dou Q, Bai ZF, Lu QL. Non-isothermal crystallization behaviors and spherulitic morphology of poly(lactic acid) nucleated by a novel nucleating agent. J Therm Anal Calorim. 2015;122:407–17.CrossRefGoogle Scholar
  5. 5.
    Xing Q, Zhang XQ, Dong X, Liu GM, Wang DJ. Low-molecular weight aliphatic amides as nucleating agents for poly (l-lactic acid): conformation variation induced crystallization enhancement. Polymer. 2012;53:2306–14.CrossRefGoogle Scholar
  6. 6.
    Menyhárd A, Varga J, Molnár G. Comparison of different bnucleators for isotactic polypropylene, characterization by DSC and temperature-modulated DSC (TMDSC) measurements. J Therm Anal Calorim. 2006;83:625–30.CrossRefGoogle Scholar
  7. 7.
    Kolstad JJ. Crystallization kinetics of poly(l-lactide-co-meso-lactide). J Appl Polym Sci. 1996;62:1079–91.CrossRefGoogle Scholar
  8. 8.
    Battegazzore D, Bocchini S, Frache A. Crystallization kinetics of poly(lactic acid)-talc composites. Express Polym Lett. 2011;5:849–58.CrossRefGoogle Scholar
  9. 9.
    Ferrage E, Martin F, Boudet A, Petit S, Fourty G, Jouffret F, Micoud P, De Parseval P, Salvi S, Bourgerette C, Ferret J, Saint-Gerard Y, Buratto S, Fortune JP. Talc as nucleating agent of polypropylene: morphology induced by lamellar particles addition and interface mineral-matrix modelization. J Mater Sci. 2002;37:1561–73.CrossRefGoogle Scholar
  10. 10.
    Shakoor A, Thomas NL. Talc as a nucleating agent and reinforcing filler in poly(lactic acid) composites. Polym Eng Sci. 2014;54:64–70.CrossRefGoogle Scholar
  11. 11.
    Courgneau C, Ducruet D, Avérous L, Grenet J, Domenek S. Nonisothermal crystallization kinetics of poly(lactide)-effect of plasticizers and nucleating agent. Polym Eng Sci. 2013;53:1085–98.CrossRefGoogle Scholar
  12. 12.
    Xiao HW, Yang L, Ren XM, Jiang T, Yeh JT. Kinetics and crystal structure of poly(lactic acid) crystallized nonisothermally: effect of plasticizer and nucleating agent. Polym Compos. 2010;31:2057–68.CrossRefGoogle Scholar
  13. 13.
    Li HB, Huneault MA. Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer. 2007;48:6855–66.CrossRefGoogle Scholar
  14. 14.
    Harris AM, Lee EC. Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci. 2008;107:2246–55.CrossRefGoogle Scholar
  15. 15.
    Ouchiar S, Stoclet G, Cabaret C, Gloaguen V. Influence of the filler nature on the crystalline structure of polylactide-based nanocomposites: new insights into the nucleating effect. Macromolecules. 2016;49:2782–90.CrossRefGoogle Scholar
  16. 16.
    Vidović E, Faraguna F, Jukić A. Influence of inorganic fillers on PLA crystallinity and thermal properties. J Therm Anal Calorim. 2017;127:371–80.CrossRefGoogle Scholar
  17. 17.
    Joshi M, Butola BS. Studies on nonisothermal crystallization of HDPE/POSS nanocomposites. Polymer. 2004;45:4953–68.CrossRefGoogle Scholar
  18. 18.
    Varga J, Stoll K, Menyhárd A, Horváth Z. Crystallization of isotactic polypropylene in the presence of a β-nucleating agent based on a trisamide of trimesic acid. J Appl Polym Sci. 2011;12:1469–80.CrossRefGoogle Scholar
  19. 19.
    Di Lorenzo ML, Silvestre C. Non-isothermal crystallization of polymers. Prog Polym Sci. 1999;24:917–50.CrossRefGoogle Scholar
  20. 20.
    Bubeck RA, Merrington A, Dumitrascu A, Smith PB. Thermal analyses of poly(lactic acid) PLA and micro-ground paper blends. J Therm Anal Calorim. 2018;131:309–16.CrossRefGoogle Scholar
  21. 21.
    Zhang KY, Ran XH, Wang XM, Han CY, Han LJ, Wen X, Zhuang YG, Dong LS. Improvement in toughness and crystallization of poly(l-lactic acid) by melt blending with poly(epichlorohydrin-co-ethylene oxide). Polym Eng Sci. 2011;51:2370–80.CrossRefGoogle Scholar
  22. 22.
    Cebe P, Hong SD. Crystallization behaviour of poly(ether-ether-ketone). Polymer. 1986;27:1183–92.CrossRefGoogle Scholar
  23. 23.
    de Medeiros ES, Tocchetto RS, de Carvalho LH, Santos IMG, Souza AG. Nucleating effect and dynamic crystallization of a poly(propylene)/talc system. J Therm Anal Calorim. 2001;66:523–31.CrossRefGoogle Scholar
  24. 24.
    Li Y, Han CY, Bian JJ, Zhang X, Han LJ, Dong LS. Crystallization and morphology studies of biodegradable poly(ε-caprolactone)/silica nanocomposites. Polym Compos. 2013;34:131–40.CrossRefGoogle Scholar
  25. 25.
    Kissinger HE. Variation of peak temperature with heating rate in differential thermal analysis. J Res Nat Bur Stand. 1956;57:217–21.CrossRefGoogle Scholar
  26. 26.
    Vyazovkin S, Sbirrazzuoli N. Isoconversional analysis of calorimetric data on nonisothermal crystallization of a polymer melt. J Phys Chem B. 2003;107:882–8.CrossRefGoogle Scholar
  27. 27.
    Vyazovkin S. Is the Kissinger equation applicable to the processes that occur on cooling? Macromol Rapid Commun. 2002;32:771–5.CrossRefGoogle Scholar
  28. 28.
    Ma WZ, Wang XL, Zhang J. Crystallization kinetics of poly(vinylidene fluoride)/MMT, SiO2, CaCO3, or PTFE nanocomposite by differential scanning calorimeter. J Therm Anal Calorim. 2011;103:319–27.CrossRefGoogle Scholar
  29. 29.
    Saeidlou S, Huneault MA, Li HB, Park CB. Poly(lactic acid) crystallization. Prog Polym Sci. 2012;37:1657–77.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest, Hungary 2018

Authors and Affiliations

  1. 1.College of Material Science and EngineeringJilin Jianzhu UniversityChangchunChina
  2. 2.Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchunChina

Personalised recommendations