Skip to main content
Log in

Investigating the effect of connection type of a sintered porous fin through a channel on heat transfer and fluid flow

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Extended surfaces represent one of practical approaches to enhance heat transfer. Based on the laws of conductive and convective heat transfer, an increase in the area across which the object is in contact with the fluid can increase heat transfer. Due to its special structure, porous media can be seen as suitable alternatives for extended surface applications. On this basis, this research investigates the effect of connection type of sintered porous fins on heat transfer and pressure drop in the fluid flow. Connection model of four- and six-contact sintered balls of constant dimensions was evaluated by means of CFD simulation in this research. To describe the problem further, surface analysis on the reference cube is presented. The results indicate that the six-contact model has more porosity than the four-contact in reference cube by 29.45%. It was further found that the six-contact model tends to increase convective heat transfer by 33%. Results of surface analysis show that the main reasons for the difference in heat transfer between the four- and six-contact models are porosity and the angle at which balls are arranged with another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

A :

Surface area (m2)

C p :

Specific heat (J kg K−1)

d p :

Ball diameter (m)

D h,ch :

The hydraulic diameter of the channel

G k :

Turbulence kinetic energy generated due to velocity (W)

G B :

Turbulence kinetic energy generated due to body force (W)

h :

Heat transfer coefficient (W m−2 K)

H :

Enthalpy (J)

K :

Thermal conductivity (W m k−1)

k :

Kinetic energy (J kg−1)

L :

Fin length (m)

\(\dot{m}\) :

Mass flow rate (kg s−1)

Nu :

Nusselt number

P :

Pressure (pa)

ΔP :

Pressure drop (Pa)

\(\dot{Q}\) :

Heat transfer (w)

Re :

Reynolds number

S :

Source term

T :

Temperature (K)

U :

Fluid velocity (m s−1)

Y M :

Turbulence density

ε :

Energy dissipation (J kg−1)

μ :

Absolute viscosity (N s m−2)

η :

Thermal efficiency

ρ :

Density (kg m−3)

σ :

Turbulent Prandtl number

θ :

Dimensionless temperature

f :

Fluid

s :

Solid surface

w :

Wall

cond :

Conduction

conv :

Convection

total :

Total

LMTD :

Logarithmic average of the temperature difference

in :

Inlet

out :

Outlet

fin :

Related to fin

ave :

Average

b :

Base

i :

Interface of solid and liquid

References

  1. Arpaci VS, Larsen PS. Convection heat transfer. Upper Saddle River: Prentice Hall; 1984.

    Google Scholar 

  2. Ye W-B. Enhanced latent heat thermal energy storage in the double tubes using fins. J Therm Anal Calorim. 2017;128(1):533–40.

    Article  CAS  Google Scholar 

  3. Ben-Nakhi A, Chamkha AJ. Effect of length and inclination of a thin fin on natural convection in a square enclosure. Numer Heat Transf A. 2006;50:381–99.

    Article  Google Scholar 

  4. Ben-Nakhi A, Chamkha AJ. Conjugate natural convection around a finned pipe in a square enclosure with internal heat generation. Int J Heat Mass Transf. 2007;50:2260–71.

    Article  Google Scholar 

  5. Ben-Nakhi A, Chamkha AJ. Conjugate natural convection in a square enclosure with inclined thin fin of arbitrary length. Int J Therm Sci. 2007;46:467–78.

    Article  Google Scholar 

  6. Ben-Nakhi A, Chamkha AJ, Ben Beya B. Effect of inclination on heat transfer and fluid flow in a finned enclosure filled with a dielectric liquid. Numer Heat Transfer, Part A. 2009;56:286–300.

    Article  CAS  Google Scholar 

  7. Chamkha AJ, Mansour MA, Ahmad SE. Double-diffusive natural convection in inclined finned triangular porous enclosures in the presence of heat generation/absorption effects. Heat Mass Transf. 2010;46:757–68.

    Article  Google Scholar 

  8. Ghalambaz M, Jamesahar E, Ismael MA, Chamkha AJ. Fluid-structure interaction study of natural convection heat transfer over a flexible oscillating fin in a square cavity. Int J Therm Sci. 2017;111:256–73.

    Article  CAS  Google Scholar 

  9. Morega A. Optimal arrays of pin fins and plate fins in laminar forced convection. J Heat Transf. 1993;115:75.

    Article  Google Scholar 

  10. Wirtz RA. A semi-empirical model for porous media heat exchanger design. ASME-Publications-Htd. 1997;349:155–62.

    Google Scholar 

  11. Jeng T-M, Tzeng S-C. Numerical study of confined slot jet impinging on porous metallic foam heat sink. Int J Heat Mass Transf. 2005;48(23):4685–94.

    Article  CAS  Google Scholar 

  12. Hamdan M, Al-Nimr MA. The use of porous fins for heat transfer augmentation in parallel-plate channels. Transp Porous Media. 2010;84(2):409–20.

    Article  CAS  Google Scholar 

  13. Lindstedt M, Karvinen R. Conjugated heat transfer from a uniformly heated plate and a plate fin with uniform base heat flux. Int J Heat Mass Transf. 2017;107:89–95.

    Article  CAS  Google Scholar 

  14. Bejan A. Entropy generation minimization: the new thermodynamics of finite-size devices and finite-time processes. J Appl Phys. 1996;79(3):1191–218.

    Article  CAS  Google Scholar 

  15. Chen L, Yang A, Xie Z, Sun F. Constructal entropy generation rate minimization for cylindrical pin-fin heat sinks. Int J Therm Sci. 2017;111:168–74.

    Article  Google Scholar 

  16. Alshuraiaan B, Khanafer K. The effect of the position of the heated thin porous fin on the laminar natural convection heat transfer in a differentially heated cavity. Int Commun Heat Mass Transfer. 2016;78:190–9.

    Article  CAS  Google Scholar 

  17. Bilen K, Gok S, Olcay A, Solmus I. Investigation of the effect of aluminum porous fins on heat transfer. Energy. 2017;138:1187–98.

    Article  CAS  Google Scholar 

  18. Kundu B, Lee K-S. A proper analytical analysis of annular step porous fins for determining maximum heat transfer. Energy Convers Manag. 2016;110:469–80.

    Article  Google Scholar 

  19. Siavashi M, Bahrami HRT, Saffari H. Numerical investigation of flow characteristics, heat transfer and entropy generation of nanofluid flow inside an annular pipe partially or completely filled with porous media using two-phase mixture model. Energy. 2015;93:2451–66.

    Article  CAS  Google Scholar 

  20. Zargartalebi H, Ghalambaz M, Noghrehabadi A, Chamkha AJ. Natural convection of a nanofluid in an enclosure with inclined local thermal nonequilibrium porous fin considering Buongiorno’s model. Numer Heat Transf A. 2016;70:432–45.

    Article  CAS  Google Scholar 

  21. Vafai K. Handbook of porous media. Boca Raton: CRC Press; 2009.

    Google Scholar 

  22. Jiang PX, Li M, Lu TJ, Yu L, Ren ZP. Experimental research on convection heat transfer in sintered porous plate channels. Int J Heat Mass Transf. 2004;47:2085–96.

    Article  CAS  Google Scholar 

  23. Jiang P-X, Lu X-C. Numerical simulation of fluid flow and convection heat transfer in sintered porous plate channels. Int J Heat Mass Transf. 2006;49(9):1685–95.

    Article  Google Scholar 

  24. Chuan L, Wang X-D, Wang T-H, Yan W-M. Fluid flow and heat transfer in microchannel heat sink based on porous fin design concept. Int Commun Heat Mass Transf. 2015;65:52–7.

    Article  Google Scholar 

  25. Zhong W, Xu K, Li X, Liao Y, Tao G, Kagawa T. Determination of pressure drop for air flow through sintered metal porous media using a modified Ergun equation. Adv Powder Technol. 2016;27(4):1134–40.

    Article  Google Scholar 

  26. Huang G, Zhu Y, Liao Z, Ouyang X-L, Jiang P-X. Experimental investigation of transpiration cooling with phase change for sintered porous plates. Int J Heat Mass Transf. 2017;114:1201–13.

    Article  Google Scholar 

  27. Versteeg H-K, Malalasekera W. An introduction to computational Fluid Dynamics: The Finite, vol. Method. London: Pearson Education; 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Heydari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mesgarpour, M., Heydari, A. & Saddodin, S. Investigating the effect of connection type of a sintered porous fin through a channel on heat transfer and fluid flow. J Therm Anal Calorim 135, 461–474 (2019). https://doi.org/10.1007/s10973-018-7356-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7356-y

Keywords

Navigation