Skip to main content
Log in

Thermal hazard analysis and combustion characteristics of four imidazolium nitrate ionic liquids

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Thermogravimetry and differential scanning calorimetry (DSC) were used to investigate the thermal stability of four nitrate-based ionic liquids. The variations of thermal behavior for different numbers or lengths of alkyl substituents for imidazolium cations were analyzed systematically. Long-term stability and operating temperature for 1.0% mass loss during 10 h (T0.01, 10 h) were estimated using model-free perdition methodologies. The results of T0.01, 10 h were predicted to be 78.73 and 81.59 °C for [Bim][NO3] and [Mim][NO3], respectively. The apparent activation energy (Ea) was obtained using four isoconversional methods at various heating rates through DSC experiments. This study confirmed that [Bim][NO3] and [Mim][NO3] decomposed swiftly, and the gaseous products can result in ignition and continuous combustion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A(α):

Pre-exponential factor (s−1)

\(\alpha\) :

Degree of conversion (dimensionless)

\(\beta\) :

Heating rate (°C min−1)

E a :

Apparent activation energy (kJ mol−1)

f(α):

Most probable kinetic function (dimensionless)

\(\it {\text{G}}\left( \alpha \right)\) :

Integral mechanism function (dimensionless)

ΔH d, avg :

Average heat of decomposition (J g−1)

R :

Universal gas constant (8.31415 J K−1 mol−1)

T :

Temperature (°C)

T 0.01, 10 h :

Temperature at mass loss reaches 1.0% for 10 h (°C)

t :

Time (min)

References

  1. Lei Z, Chen B, Koo YM. Introduction: ionic liquids. Chem Rev. 2017;117:6633–5.

    Article  CAS  PubMed  Google Scholar 

  2. Rogers RD, Seddon KR. Ionic liquids–solvents of the future? Science. 2003;302:792–3.

    Article  PubMed  Google Scholar 

  3. Maton C, Vos ND, Stevens CV. Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem Soc Rev. 2013;42:5963–77.

    Article  CAS  PubMed  Google Scholar 

  4. Chen X, Ma C, Jiao C. Synergistic effects between [Emim]PF6 and aluminum hypophosphite on flame retardant thermoplastic polyurethane. RSC Adv. 2016;6:67409–17.

    Article  CAS  Google Scholar 

  5. Jiao C, Wang H, Li S, Chen X. Fire hazard reduction of hollow glass microspheres in thermoplastic polyurethane composites. J Hazard Mater. 2017;332:176–84.

    Article  CAS  PubMed  Google Scholar 

  6. Kamavaram V, Reddy RG. Thermal stabilities of di-alkylimidazolium chloride ionic liquids. Int J Therm Sci. 2008;47:773–7.

    Article  CAS  Google Scholar 

  7. Wang R, Jin CM, Twamley B, Shreeve JM. Syntheses and characterization of unsymmetric dicationic salts incorporating imidazolium and triazolium functionalities. Inorg Chem. 2006;45:6396–403.

    Article  CAS  PubMed  Google Scholar 

  8. Xiao JC, Shreeve JM. Synthesis of 2, 2′-biimidazolium-based ionic liquids: use as a new reaction medium and ligand for palladium-catalyzed Suzuki cross-coupling reactions. J Org Chem. 2005;70:3072–8.

    Article  CAS  PubMed  Google Scholar 

  9. Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of cellose with ionic liquids. J Am Chem Soc. 2002;124:4974–5.

    Article  CAS  PubMed  Google Scholar 

  10. Tao F, Song H, Chou L. Catalytic conversion of cellulose to chemicals in ionic liquid. Carbohydr Res. 2011;346:58–63.

    Article  CAS  PubMed  Google Scholar 

  11. Latip NAA, Ng HM, Farah N, Ramesh K, Ramesh S. Novel development towards preparation of highly efficient ionic liquid based co-polymer electrolytes and its application in dye-sensitized solar cells. Org Electron. 2017;41:33–41.

    Article  CAS  Google Scholar 

  12. Lin HH, Peng JD, Suryanarayanan V, Velayutham D, Ho KC. Perfluoro anion based binary and ternary ionic liquids as electrolytes for dye-sensitized solar cells. J Power Sources. 2016;311:167–74.

    Article  CAS  Google Scholar 

  13. Zhang Y, Gao H, Joo YH, Shreeve JNM. Ionic liquids as hypergolic fuels. Angew Chem Int Ed. 2011;50:9554–62.

    Article  CAS  Google Scholar 

  14. Earle MJ, Esperanca JMSS, Gilea MA, Lopes JNC, Rebelo LPN, Magee JW, Seddon KR, Widegren JA. Lithium-ion batteries: advanced materials and technologies. Nature. 2006;439:831–4.

    Article  CAS  PubMed  Google Scholar 

  15. Liaw HJ, Huang SK, Chen HY, Liu SN. Reason for ionic liquids to be combustible. Procedia Eng. 2012;45:502–6.

    Article  CAS  Google Scholar 

  16. Cao Y, Mu T. Comprehensive investigation on the thermal stability of 66 ionic liquids by thermogravimetric analysis. Ind Eng Chem Res. 2014;53:8651–64.

    Article  CAS  Google Scholar 

  17. Katritzky AR, Singh S, Kirichenko K, Smiglak M, Holbrey JD, Reichert WM, Spear SK, Rogers RD. In search of ionic liquids incorporating azolate anions. Chem Eur J. 2006;17:4630–41.

    Article  CAS  Google Scholar 

  18. Wellens S, Thijs B, Binnemans K. How safe are protic ionic liquids? Explosion of pyrrolidinium nitrate. Green Chem. 2013;15:3484–5.

    Article  CAS  Google Scholar 

  19. Smiglak M, Reichert WM, Holbrey JD, Wilkes JS, Sun L, Thrasher JS, Kirichenko K, Singh S, Katritzky AR, Rogers RD. Combustible ionic liquids by design: is laboratory safety another ionic liquid myth? Chem Commun. 2006;24:2554–6.

    Article  CAS  Google Scholar 

  20. Gelfand BE, Khomik SV, Eremenko LT, Tsiganov SA. Basic features of the self-ignition of atomized liquid nitro/nitrate/nitrite compounds in a gaseous medium. Proc Combust Inst. 2000;28:879–83.

    Article  CAS  Google Scholar 

  21. Hainer RM. The application of kinetics to the hazardous behavior of ammonium nitrate. Symp Int Combust. 1955;5:224–30.

    Article  Google Scholar 

  22. Olivares RI. The thermal stability of molten nitrite/nitrates salt for solar thermal energy storage in different atmospheres. Sol Energy. 2012;86:2576–83.

    Article  CAS  Google Scholar 

  23. Wang C, Du Y, Che D. Study on N2O reduction with synthetic coal char and high concentration CO during oxy-fuel combustion. Proc Combust Inst. 2015;35:2323–30.

    Article  CAS  Google Scholar 

  24. Classification, Labelling and Packaging (CLP) of Substances and Mixtures, European Chemicals Agency, Helsinki. ISBN: 978–92–9247–413–3.

  25. Grigiante M, Brighenti M, Antolini D. Analysis of the impact of TG data sets on activation energy (E a). J Therm Anal Calorim. 2017:129:553–65.

    Article  CAS  Google Scholar 

  26. Quraishi KS, Bustam MA, Krishnan S, Khan MI, Wilfred CD, Lévêque JM. Thermokinetics of alkyl methylpyrrolidinium [NTf2] ionic liquids. J Therm Anal Calorim. 2017;129:261–70.

    Article  CAS  Google Scholar 

  27. Sinapour H, Damiri S, Pouretedal HR. The study of RDX impurity and wax effects on the thermal decomposition kinetics of HMX explosive using DSC/TG and accelerated aging methods. J Therm Anal Calorim. 2017;129:271–9.

    Article  CAS  Google Scholar 

  28. ASTM D 93, Standard test methods for flash-point by Pensky-Martens closed cup tester, American Society for Testing and Materials, West Conshohocken, PA, USA (2016).

  29. Geyer A, Alicke B, Konrad S, Schmitz T, Stutz J, Platt U. Chemistry and oxidation capacity of the nitrate radical in the continental boundary layer near Berlin. J Geophys Res-Atmos. 2001;106:8013–25.

    Article  CAS  Google Scholar 

  30. Smiglak M, Hines CC, Reichert WM, Vincek AS, Katritzky AR, Thrasher JS, Sun L, McCrary PD, Beasley PA, Kelley SP, Rogers RD. Synthesis, limitations, and thermal properties of energetically-substituted, protonated imidazolium picrate and nitrate salts and further comparison with their methylated analogs. New J Chem. 2012;36:702–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the Ministry of Science and Technology (MOST) in Taiwan under the Contract Number 104-2622-E-224-009-CC2 for financial support, as well as the Department of Natural Sciences Key Fund, Bureau of Education, Anhui Province, China, for its financial support under Contract Number KJ2017A078.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shang-Hao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, WC., Yu, WL., Liu, SH. et al. Thermal hazard analysis and combustion characteristics of four imidazolium nitrate ionic liquids. J Therm Anal Calorim 133, 683–693 (2018). https://doi.org/10.1007/s10973-018-7319-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-018-7319-3

Keywords

Navigation